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INTRODUCTION 

The subject of this research is image processing of digitized mammograms. Its purpose is 

to improve the extraction of information from mammograms through image processing 

techniques so as to facilitate better detection and delineation of densities and lesions. The focus 

of this research is on mammographic density quantification and lesion delineation. Computer- 

assisted analysis of mammographic density would provide an objective, quantitative measure of 

cancer risk factor. This measure will be useful in total risk analysis in several ways; in choosing 

alternative screening paradigms in determining the risk-benefit-ratio for the administration of 

toxic preventive measures, in signaling double reading of the mammograms, and in selecting the 

appropriate lesion detection algorithm. 

This research has the following main aims. 

1. To develop and implement a fuzzy object definition method for the detection 

and delineation of parenchymal density, masses and microcalcifications in 

digitized mammograms. 

2. To develop and implement a fuzzy object definition method for the 

classification of lesions and mammographic densities. 

3. To conduct evaluation studies using histologically verified mammographic data 

to determine the efficacy of the proposed methods of lesion detection and 

quantitative classifications. 



BODY 

Tasks 1,2,3,4: Collect Image Data, Modify Affinity for Vector Valued Features, Implement 
and Evaluate Lesion Detection Methods. 

We have digitized about 200 existing mammograms (at a resolution of 100 microns) from 

our patient database in the hospital. These images were transmitted to our (Medical Image 

Processing Group -MIPG) facility, converted to the format of 3DVIEWNIX [1] (the software 

platform used in the project), and stored on a medium These data contain normal studies as well 

as studies with masses and microcalcifications. 

We spent a considerable amount of time investigating the affinity relations that are 

appropriate for segmenting digitized mammograms. A novel scale-based fuzzy affinity and 

connectedness method has been developed, implemented in 3DVIEWNIX and tested. A brief 

summary of its approach [2, 3] is given below. 

Fuzzy affinity between two nearby pixels is a reflexive and symmetric relation whose 

strength lies between 0 and 1 and indicates how the pixels locally "hang together" in the image. 

The notion of fuzzy affinity between two pixels is expressed as a non-decreasing function of 

fuzzy adjacency (dependent only on the distance between them), their homogeneity, and their 

agreement to some global intensity-based object property or feature. In determining the 

homogeneity and feature-based components of affinity between two pixels p\ and pz, a 

neighborhood around both p\ and P2 are considered. The size of this neighborhood, called scale, is 

not fixed but depends on the size of the largest homogeneous region locally. The scale is first 

computed automatically for all pixels in the image. 

Fuzzy connectedness between any two (not necessarily nearby) pixels p\ and pz is a fuzzy 

relation whose strength lies between 0 and 1. It is determined by considering all possible paths 



between p\ and pt. A path is simply a sequence of nearby pixels. A strength of connectedness is 

assigned to each path which is simply the smallest affinity of successive pixels along the path. 

The strength of connectedness between p\ and P2 is the largest of the strengths of all possible 

paths between p\ and/?2- 

In one way, we can imagine that two pixels are strongly connected to each other if there is a 

path between them through locally homogeneous regions. We call it homogeneity-based 

connectedness. In another way, the connectedness between two pixels could be imagined as their 

likeliness to fit the object features and unlikeliness to fit the background features. We call it 

feature-based connectedness. One may note that feature-based connectedness does not have the 

notion of path homogeneity and thus fails to overcome the effects of slowly varying components 

over the image. On the other hand, homogeneity based connectedness suffers from the fact that, in 

some applications, objects merge with background so smoothly that always there is a path from 

object to background through locally homogeneous regions. This is more pronounced when 

blurring or partial voluming is high. Moreover, especially in a thin branch of an object, often, 

there are small regions with high inhomogeneity that stop the homogeneity-based paths for the 

rest of the branch. Therefore, the two different notions of connectedness are combined. 

Additionally, the notion of scale allows the correct estimation of homogeneity and object features 

that is insensitive to noise. 

A detailed mathematical formulation of scale-based fuzzy affinity, connectedness, the 

associated algorithms, and their validation on both 2D and 3D clinical images and phantoms is 

presented in [2, 3]. A careful statistical evaluation indicates that the scale-based method is much 

superior to the original method described in [4]. 



We have investigated several methods for the delineation of lesions in digitized 

mammograms. We have basically pursued two types of approaches. 

The first approach is based on fuzzy connectedness. It looks for abnormality in the network 

by high-strength-of-connectedness paths within the image. The strength of connectedness of 

every connecting path between every pair of pixels is determined using the method described in 

[3]. This method needs some further work. There are many avenues here which we did not realize 

earlier. This approach seems to offer, without having to explicitly detect and delineate lesions, a 

method to identify architectural distortions. One exciting possibility is to determine if sufficient 

distortion in architecture can be detected well ahead of the time of appearance of visible lesions. 

We are investigating this avenue currently and possibly pursue other funding sources in the future 

to support this activity. 

The second approach we have developed is called live wire [5]. In this method, an operator 

initially selects a point in the vicinity of a lesion boundary. At this time a "live-wire" is displayed 

in real time as the operator moves the mouse cursor. The live wire represents the best path from 

the initial point selected by the operator to the current cursor position. Since the best path is 

always computed and displayed in real time, the user can test how to select a largest possible 

boundary segment by moving the cursor close to the boundary and checking how well the live 

wire snaps onto the boundary. If this boundary segment is acceptable, the user deposits the cursor 

which now becomes the new initial point and the process continues. Typically 2-3 points selected 

on the boundary in this fashion are adequate to segment and entire boundary. A 3D version of this 

method has also been developed [6] for segmentation of lesions in MR images. This method has 

also been utilized in several other applications [7, 8]. 



Tasks 5,6,7: Prepare Reports, Implement and Evaluate Density Classification Methods 

A method for automatically segmenting dense regions and quantifying density has been 

fully developed, implemented and tested on over 100 mammograms [9, 10]. This method is 

described below in some detail. 

Segmentation of breast from background: At the very beginning, using 3DVEEWNIX 

supported LIVE-WIRE [6] tool, regions corresponding to pectoral muscles are interactively 

excluded when those are projected in the image. In the entire process, this is the only step 

requiring operator intervention. Fuzzy connectivity is used as the underlying technique in 

segmenting breast from background. To apply the fuzzy connectivity model, we need to estimate 

several parameters. Studying 120 images from 60 patients, we found that the intensity histogram 

always contains a highly prominent peak at the lower intensities, and the peak is contributed 

mostly by background. The first prominent peak in the intensity histogram is detected and used to 

(roughly) calculate the mean and standard deviation of background intensity. To apply the fuzzy 

connectivity algorithm, we need to select a set of reference (seed) pixels. For this purpose, we 

assume that the rightmost column in the image always lies in the background. We include all 

these pixels in the reference set. Fuzzy connectedness processing starting from these pixels gives 

us a fuzzy connectivity image for background. We discard connectivity strengths in the upper half 

and keep the lower half as the breast region. 

Fuzzy connectivity image for glandular tissue: The fuzzy connectivity method is used to 

enhance glandular dense regions and to suppress fat tissues; the resulting fuzzy connectivity 

image, in turn, is used for automatic segmentation of the glandular region. The major task in 

applying the fuzzy connectivity model is to estimate the parameters of the affinity relation and to 

select a set of reference pixels. After ignoring the upper 0.01 percentile intensities, the mean and 
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Standard deviation parameters (for the homogeneity and feature-based affinity) are estimated from 

those parts of the breast region falling in the upper 25% of the intensity range. Finally, the pixels 

in the breast region falling in the upper 15% of the intensity range are selected as reference pixels. 

The fuzzy connected image for the glandular tissue is then computed. 

Automatic threshold selection: For any threshold, the image is divided into two regions. 

Local homogeneity based affinity between every pair of spatially adjacent pixels is used to define 

their likeliness of belonging to the same object or of not belonging to the same object. The 

optimum threshold is determined from the associated statistics called threshold energy. The 

threshold with the minimum threshold energy is selected as the optimum threshold. We generate 

several descriptors from the segmented binary image and the original image to quantify the 

glandular tissues as described below. Note that all steps are completely automatic except the 

exclusion of pectoral muscles if they are included in the mammograra 

Density quantification: The method has been tested on over 80 studies (each study 

produces two digitized mammograms) from routine exams from two projections (CC and MLO). 

The population included normal as well as cancer cases (masses and calcifications). Except for 

the exclusion of pectoral muscles, the entire method has worked automatically on all images 

wherein all parameters required by the algorithms are selected automatically. The algorithms 

produced visually acceptable segmentations in all images. From the segmented regions and the 

image intensities in them, we compute a set of density related parameters including total 

glandularity (TG), TG/total fat(TF), TG/average fat(AvF), TG/area of breast(AB), area of 

glandularity(AG), AG/area of fat(AF), AG/AB. TG and TF are computed by integrating 

radiographic intensity over respective segmented regions while AG, AB and AF are computed by 



counting the number of pixels in the respective regions. Finally, AvF is computed by dividing TF 

and AF. 

To evaluate the density quantification method, we tested the correlation between the 

parameters from the two projections (CC and MLO). The correlations for TG, TG/TF, TG/AvF, 

TG/AB, AG, AG/AF and AG/AB are 0.967, 0902, 0951, 0944, 0.959, 0.915 and 0.941 

respectively. 

We also conducted a phantom experiment as follows. A rectangular parallelepiped wax 

object was suspended in a cylindrical water bath and imaged at different orientations. The various 

measures based on integrating intensity in the segmented object (wax) region produced more 

accurate density quantification than the area measures. 

Task 8, 9, 10:  Prepare Technical Reports/Papers, Compare Among lesion Detection 
Strategies 

The previously developed density segmentation method was based on the principle of fuzzy 

connectedness [4]. This method has been further extended and improved, resulting in the 

publications cited in [3, 11-13]. We believe that these theoretical and algorithmic developments 

are  very general,  constitute  a breakthrough in image  segmentation,  and have far wider 

applications than just in mammographic image processing. Although not related to the grant 

under consideration, we have explored a variety of applications for these same algorithms, 

including   the   clutter-free   display   of  vessels   via   MRA   [14],   Multiple   Sclerosis   lesion 

quantification via MRI [15, 16], tumor detection in the brain via MRI [17], and the quantification 

of hyper-intense lesions in late-life depression [18]. These algorithms have been compared with 

the earlier versions of the algorithms and have been shown to be more robust under noise and 

with improved segmentation effectiveness [11-13]. 
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A new class of interactive methods for lesion detection based on live wire has also been 

developed [5]. These are user-steered methods and are needed in extremely difficult segmentation 

situations. These methods have been compared to manual methods and earlier live wire methods 

and shown to be significantly more efficient with improved precision. 

Tasks 11, 12: Evaluate the Accuracy of Lesion/Density Classification, Write Technical 
Reports/Papers. 

The density classification method has been tested on over 150 mammograms [10] and has 

shown high consistency (better than 0.96 correlation) between the two projections (MLO and CC) 

of the same breasts. This method is now being utilized in another project for density classification 

of women undergoing hormone therapy. 

In the process of evaluating lesion classification strategies using fuzzy connectedness 

parameters, we have realized that it is more sensible to classify the architectural distortions 

quantified through fuzzy connectedness prior to the appearance of visible mammographic lesions. 

Based on 40 cases of masses, for which we had 2-3 prior mammograms available prior to the 

appearance of masses, we have evidence that the fuzzy connectedness parameters may be able to 

describe the architectural distortions that take place before visible lesions appear. This exciting 

possibility requires considerable further work to prove conclusively the preliminary observations. 

If proven, this may have a significant impact on the early diagnosis of breast cancer. 

KEY RESEARCH ACCOMPLISHMENTS 

• The development of a novel method of defining the "hanging-togetherness" of dense regions 

via scale-based fuzzy affinity and connectedness [3]. This framework, we believe, 

constitutes a breakthrough in image segmentation. It has been further studied by other 

research groups. We have extended this framework considerably [11-13] and demonstrated 
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that it is effective also in several areas of medical image analysis [14-18] other than 

mammographic image processing. 

• An interactive method of lesion segmentation using live wire [5,6]. 

• An automatic, validated method of mammographic density quantification and the 

development of a host of intensity-based parameters that are more accurate than the measure 

of the area of dense regions. This method is currently utilized in another project in which 

change in breast density is assessed as a result of hormone therapy. 

• A novel method of detecting architectural distortions without explicitly delineating lesions. 

The method is being tested for its effectiveness in predicting the onset of lesions. This 

interesting preliminary result indicates that this method may have a significant impact on the 

early detection of cancer in the future before lesions appear. 

REPORT ABLE OUTCOMES 

The following papers/patents have been presented, submitted or published. 

[ 1]   Udupa, J.K., Saha, P.K., Lotufo, R.A.: "Fuzzy-connected object definition in images with 

respect to co-objects," SPIE Proceedings, 3661:236-245, 1999. 

[ 2]   Saha, P.K., Udupa, J.K.: "Scale-based fuzzy connectivity: A novel image segmentation 

methodology and its validation," SPIE Proceedings, 3661:246-257, 1999. 

[ 3]   Saha, P.K., Udupa, J.K., Conant, E.F., Chakraborty, D.P.: "Near-automatic segmentation 

and   quantification   of  mammographic   glandular   tissue   density,"   SPIE   Proceedings, 

3661:266-276, 1999. 

[ 4]   Falcao, A.X., Udupa, J.K., Miyazawa, F.K.: "Ultrafast user-steered segmentation paradigm: 

Live-wire-on-the-fly," SPIE Proceedings, 3661:184-191,1999. 
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[ 5]   Lei, T, Udupa, J.K., Saha, P.K., Odhner, D.: "3D MR angiographic visualization and artery- 

vein Separation," SPIE Proceedings, 3658:58-66, 1999. 

[ 6]   Saha,  P.,  Udupa,   J.K.:   "Scale-based  fuzzy connected  image  segmentation:  Theory, 

algorithms and validation," Computer Vision and Image Understanding, 77(2): 145-174, 

2000. 

[7]   Falcao, A., Udupa, J.K., Miyazawa, F.K.: "An ultrafast user-steered image segmentation 

paradigm: Live-wire-on-the-fly," IEEE Transactions on Medical Imaging, 19(1):55-61, 

2000. 

[ 8]   Rice,   B.L.,  Udupa,  J.K.:   "Fuzzy connected  clutter-free  volume  rendering  for  MR 

angiography," International Journal of Imaging Systems and Technology, 11:62-70, 2000. 

[ 9]   Falcao, A.X., Udupa, J.K.: "A 3D generalization of user-steered live wire segmentation," 

Medical Image Analysis, 4:389-402, 2000. 

[10] Saha, P.K., Udupa, J.K.: "A new optimum thresholding method using region homogeneity 

and class uncertainty," SPIE Proceedings, 3979:180-191, 2000. 

[11] Saha, P.K., Udupa, J.K.: "Scale-based filtering of medical images," SPIE Proceedings, 

3979:735-746, 2000. 

[12] Udupa, J.K., Grossman, R.I., Nyul, L.G., Ge, Y., Wei, L.: "Multiprotocol MR image 

segmentation in multiple sclerosis: Experience with over 1000 studies," SPIE Proceedings, 

3979:1017-1027,2000. 

[13] Lei, T., Udupa, J.K., Saha, P.K., Odhner, D.: "Separation of artery and vein in contrast 

enhanced MRA images," SPIE Proceedings, 3978:233-244, 2000. 
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[14] Saha, P.K., Udupa, J.K.: Iterative relative fuzzy connectedness and object definition: 

Theory,  algorithms,  and  applications  in image  segmentation." Proceedings of IEEE 

Workshop on Mathematical Methods in Biomedical Image Analysis, Hilton Head, South 

Carolina, pp. 28-35, 2000. 

[15] Saha, P.K., Udupa, J.K.: "Relative fuzzy connectedness among multiple objects: Theory, 

algorithms,   and  applications   in  image   segmentation,"  Computer  Vision  and Image 

Understanding, in press. 

[16] Saha,  P.,  Udupa,  J.K.,  Conant,  E.,  Chakraborty, D.P.,  Sullivan,  D.:  "Breast tissue 

glandularity quantification via digitized mammograms," IEEE Transactions on Medical 

Imaging, accepted. 

[17] Udupa, J.K., Saha, P.K., Lotufo, R.A.: "Relative fuzzy connectedness and object definition: 

Theory, algorithms, and applications in image segmentation," IEEE Transactions on Pattern 

Analysis and Machine Intelligence, submitted. 

[18] Saha, P.K., Udupa, J.K.: "Optimum image thresholding via class uncertainty and region 

homogeneity," IEEE Transactions on Pattern Analysis and Machine Intelligence, in press. 

[19] Saha, P.K., Udupa, J.K.: "Scale-based image filtering preserving boundary sharpness and 

fine structures," IEEE Transactions on Medical Imaging, submitted. 

[20] Udupa, J.K., Grevera, G.J.: "Go digital, go fuzzy," Pattern Recognition Letters, submitted. 

[21] Lei, T., Udupa, J.K., Saha, P.K., Odhner, D., Baum, R., Tadikonda, S.K., Yucel, K.: "3D 

MRA visualization and artery-vein separation using blood-pool contrast agent MS-325," 

Journal of Academic Radiology, accepted. 
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[22] Saha, P.K., Udupa, J.K.: "Fuzzy connected object delineation: Axiomatic path strength 

definition and the case of multiple seeds," Computer Vision and Image Understanding, 

submitted. 

CONCLUSIONS 

1. The new scale-based fuzzy connectedness method is more robust and effective than the 

original method. It is very effective for mammographic image segmentation as well as in 

several other applications. 

2. Glandularity is considered to be one of the strongest factors for breast cancer. Automatic 

breast glandularity quantification from digitized mammograms is practical using the 

proposed method. The method removes the subjectivity inherent in interactive threshold 

selection techniques currently used. 

3. The live wire method is effective in segmenting mammographic lesions. It seems to be more 

robust than the active contour methods commonly used. Its utility is being evaluated in 3D 

(MRI) lesion segmentation. 

4. The fuzzy connectedness method facilitates various ways of characterizing the architecture 

of the breast. There are some preliminary indications that the distortions in architectures as 

measured by fuzzy connectedness parameters may predict the occurrence of visible lesions. 
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ABSTRACT 

Tangible solutions to practical image segmentation are vital to ensure progress in many applications of medical 
imaging. Toward this goal, we previously proposed a theory and algorithms for fuzzy connected object definition in 
n-dimensional images. Their effectiveness has been demonstrated in several applications including multiple sclerosis 
lesion detection/delineation, MR Angiography, and craniofacial imaging. The purpose of this work is to extend the 
earlier theory and algorithms to fuzzy connected object definition that considers all relevant objects in the image 
simultaneously. In the previous theory, delineation of the final object from the fuzzy connectivity scene required the 
selection of a threshold that specifies the weakest "hanging-togetherness" of image elements relative to each other 
in the object. Selection of such a threshold was not trivial and has been an active research area. In the proposed 
method of relative fuzzy connectivity, instead of defining an object on its own based on the strength of connectedness, 
all co-objects of importance that are present in the image are also considered and the objects are let to compete 
among themselves in having image elements as their members. In this competition, every pair of elements in the 
image will have a strength of connectedness in each object. The object in which this strength is highest will claim 
membership of the elements. This approach to fuzzy object definition using a relative strength of connectedness 
eliminates the need for a threshold of strength of connectedness that was part of the previous definition. It seems to 
be more natural since it relies on the fact that an object gets defined in an image by the presence of other objects 
that coexist in the image. All specified objects are defined simultaneously in this approach. The concept of iterative 
relative fuzzy connectivity has also been introduced. Robustness of relative fuzzy objects with respect to selection 
of reference image elements has been established. The effectiveness of the proposed method has been demonstrated 
using a patient's 3D contrast enhanced MR angiogram and a 2D phantom scene. 

Keywords: Image segmentation, fuzzy connectivity, object definition, object delineation 

1. INTRODUCTION 

Two- and higher-dimensional images are currently available through sensing devices that operate on a wide range 
of frequency in the electromagnetic spectrum — from ultrasound to visible light to X- and 7-rays.1 The activity of 
defining meaningful objects in these images, generally referred to as image segmentation, spans over three decades.2 

The present paper falls in this category and deals with an extension of a previous work3 which was also motivated by 
the problem of defining objects in multidimensional medical images. Denning objects in these image data is funda- 
mental to most image-related applications. It is obvious that defining objects is essential prior to their visualization, 
manipulation, and analysis. Even operations such as image interpolation and filtering, seemingly unrelated to object 
definition, can be made more effective with object knowledge. 

Object definition in images may be considered to consist of mainly two related tasks - recognition and delineation. 
Recognition is the process of determining roughly the whereabouts of the object in the image. Delineation, on the 
other hand, is a process that defines the precise spatial extent and composition of the object in the image. A variety 
of approaches have been taken in biomedical imaging applications, wherein the degree of automation for recognition 
and delineation ranges from completely manual to completely automatic. 
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Among automatic approaches to recognition, two classes may be identified: knowledge-based and model-based 
Knowledge-based methods'- form hypotheses relating to objects and test them for recognizing object pa^ts üstllv' 
some preliminary delineation is needed for forming and testing hypotheses relating to object components Mod -' 
based methods«-« utilize predefined object models to optimally match image information to models fo recogto 
object components. i«.ugnizing 

Approaches^ delineation may be broadly classified into two groups: boundary-based and region-based. Boundary, 
based methods       produce a delineation of the object boundaries in the image whereas region-based methods3-"^ 
generate delations in the form of the region occupied by the object in the image.   Each of these groups mav 

ÄÄr^ " hard "* *"* ~ dePendinS °n Whether thg d6fined ^-/^daS:s
mare 

The subject matter of this paper is related to delineation. In a previous paper.3 we described a theorv „„H 

dgonthms for fuzzy connected object definition, treating a given image as a fuzzv subset of the set of snaS 
elements (spels) comprising the image. The method is currently utilized in several" medical imaging applicS 
including multiple sclerosis lesion segmentation and quantification.15"1' MR angiographv,1« and hard and soft 
tissue 3D imaging for craniofacial surgery.19 s  s   * ..      «m nara ana sort 

In the present paper, an extension to the above definition of fuzzy objects is proposed. In the proposed method 
of relative fuzzy connectivity, instead of defining an object on its own based on the strength of connectedness aU 
co-objects of importance that are present in the image are also considered and the objects are let to compete amonz 
themselves m having spels as their members. In this competition, every pair of spels in the image will have a strength 
of connectedness in each object. The object in which this strength is highest will claim membership of the iS 
approach to fuzzy object definition using a relative strength of connectedness eliminates the need for a threshold of 
strength of connectedness that was part of the previous definition. It seems to be more natural since it relies on the 
tact tnat an object gets defined in an image by the presence of other objects that coexist in the image All snecified 
objects are defined simultaneously in this approach. Its theory and algorithms are presented in Sections 2 and 3 
respectively. In section 4, we introduce the key ideas behind the extension of the relative connectivity model to an' 
iterative framework. In Section 5, we illustrate the results of application of these methods on a contrast enhanced MR 

SS 7   ft Sf Same SeCti°n' 'W a 2D P^™' we compare the method to a method of optimum 
thresholding of the fuzzy connectivity scenes.3-20   Finally, concluding remarks are drawn in Section 6. 

2. THEORY 

Terminologies and notations of our previous paper3 are followed in this paper. For completeness, some of the key 
concepts that are required in this paper are briefly described here. Prior to this, an intuitive description of the key 
ideas is given using a two dimensional example. y 

2.1. An Outline of the Key Ideas 

Colder a 2D image composed of three regions corresponding to three objects 0lt 02, 03 as illustrated in Figure 
1, 03 being the background. Suppose we determine an affini.., relation3 for each object that assigns to every pair 
of nearby spels in the image a value based on the nearness of spels in space and in intensity (or in features derived 
from intensities). Affinity represents local "hanging togetherness" of spels. To every "path" connecting every pair 
of spels, such as the solid curve n connecting c and d in Figure 1, a "strength of connectedness" in every object 
ui assigned which issimply the smallest pairwise affinity (associated with the corresponding object) of spels along 
the path If the affinities are derived properly, then irx is likely to have a higher strength in Ox than in 02 or in" 
UZ. further, a path such as K2 is likely to have a lower strength in Ox than the strength of wlin01. This relative 
strength of connectedness in different objects offers a natural mechanism for partitioning spels into regions based on 
the strongest paths between every pair of spels in every object. A spel such as a in the fuzzy boundary between Ox 

and 03 will be claimed by 0, or 03 depending on which pool of spels it hangs together more strongly. 

2.2. Notations and Definitions 

Let X be any reference set. A fuzzy subset ,4 of * is a set of ordered pairs {(*, ^(r))|i £ X] where pA : X-> [0,11 

v'he;e;S?7Tof A,in?-1hzzy. reiation»inX*****subse^ {((«.»).^(*,»))i*,» « x, * 
XxX.  p will be called a similitude relation in X if it is reflexive (i.e., Vi e X,p,(x,x) = 1), symmetric (i.e., 



Figure 1. Illustration of the basic ideas of relative connectivity. 

Vx,y 6 X,pp(x,y) = p„{y,x)) and transitive (i.e., Vx,z € X,ft„(x,z) = maxy€x[min[/ap(x,2,),/i,,(y,z)]]).   The 
analogous concept for a hard binary relation is an equivalence relation. 

The pair (Zn,a), where Zn is the set of n-tuples of integers and a is a frizzy spel adjacency relation (i.e., any 
fuzzy relation that is reflexive and symmetric) on Zn, will be referred to as a fuzzy digital space. Elements of Zn 

will be called a spel (short for spatial element). A scene over a fuzzy digital space (Zn, a) is a pair C = (C, f) where 
C = {c\ - bj < CJ < bj for some 6 e Z£}, Z£ is the set of n-tuples of positive integers, / is a function whose domain 
is C, called the scene domain, and whose range is a set of numbers [L,H\. 

Any fuzzy relation K in C is said to be a fuzzy spel affinity relation in C if it is reflexive and symmetric. In 
practice, K should be such that pK(c,d) is a function of the fuzzy adjacency between c and d, the homogeneity of 
their intensities (or other features) and their agreement to some expected value of object intensity (or features).20 

Further, pK(c,d) may also depend on the scale of the object at c and A20 Throughout this paper, K with an 
appropriate subscript and/or a superscript will be used to denote fuzzy spel affinity. A path n inC from a spel c 
to a spel d is a sequence (ci, c2, • • •, O of m > 2 spels in C, such that ci = c and c™ = d. The strength assigned 
to a path is defined as the weakest affinity between successive pairs of elements along the path. Thus, the strength 
of ir is min1<i<m[^K(ct,ci+i)]. For any S C C, we say that the path T is contained in 5 if all all spels in TT belong 
to S. The strength of fuzzy K-connectedness from c to d, denoted nx{c,d), is the maximum of the strengths of all 
paths between c and d. We have shown earlier3 that fuzzy /c-connectedness is a similitude relation. Throughout this 
paper, the upper case form of the symbol used to represent a fuzzy spel affinity will be used for the corresponding 
fuzzy connectedness relation. 

For any scene C = (C, /) over (Zn, a), for any fuzzy spel affinity K in C, and for any spel oZC, the K-connectivity 
scene of o in C is the scene CKo = {C,fKo) such that, for any c € C, fKo{c) = m(o,c). 



2.3. Relative Fuzzy «-Objects 

For any spels o, b in C. define 
Pad, = {c\ c€C and UK(o.c) > nic{b,c)}. (1) 

The idea here is that o and b are speis specified in "object" and "background", respectively. Note that Pob   = <p if 
b = o. 

A relative fuzzy K-object O of a scene C = (C, /) containing a spel o relative to a background containing a spei b 
is the fuzzy subset of C defined by the membership function 

*i={rs 
where 77 is an "objectness"function whose domain is [L. H] and whose range is [0, 1]. The range of /(c) is usually not 
[0.1] and /(c) itself may not directly represent the degree of objectness. For example, in a CT scene of the lungs, 
the spels consisting of the interior of the bronchial tree have low /(c) values. The proper choice of 77 to give accurate 
values of the measurements (such as volume) that are sought from the segmented fuzzy object is a non trivial issue. 
Since, it is out of scope of the present work, we will not delve into this here. For short, we will refer to O as simply 
a relative fuzzy K-object of C. Some particular cases are instructive to study. Suppose /*«■(&, o) = 1. Then by (1), 
Pob. = <t> and the relative «-object is empty. This makes sense since both 0 and b are inside the "object" in this case, 
and there is no meaningful separation between sets of spels "hanging together" with 0 and with b. Note also that,' 
when C is a binary scene and /(o) ^ f(b), i.e., y.K(o, b) ^ 1, then P00. is essentially a connected component of spels 
whose type is that of o that contains o. To ensure that this is a reasonable definition, we will state (but not prove) 
several properties of relative fuzzy «-objects. The most important among these is that, for any spel p in Pob. and 
most spels q not in Pob., we get the same relative fuzzy «-object. 

The following theorem states the tightness of relative fuzzy «-objects. 

Theorem 1. For any scene C = (C, f) over (Zn,a), for any fuzzy spel affinity « in C, and for any spels o, b,p and c 
in C such that p S Pob., 

PK{P,C)> (iK{b,c) (3) 

if, and only if, c € Pob.. 

The following theorem asserts the robustness of relative fuzzy «-objects with respect to reference spels specified 
in the object and in the background. 

Theorem 2. For any scene C = (C, /) over (Zn, a), for any fuzzy spel affinity « in C, and for any spels o, b,p and q 
in C such that p € P00., 

Pob. =PPq. ifgePio.- (4) 

Note that the condition in (4) is sufficient for Po6. = Pp„. but not necessary. The necessary and sufficient 
condition is expressed in the following theorem. 

Theorem 3. For any scene C = (C, /) over (Zn, a), for any fuzzy spel affinity « in C, and for any spels o, b,p and q 
in C such that p € Pob., 

Pob. = Ppq. if, and only if, pK(b, o) = fiK(q, 0). (5) 

The above two theorems have different implications in the practical computation of relative fuzzy «-objects in 
a given scene in a repeatable, consistent manner. Although less specific, and therefore more restrictive, Theorem 2 
offers practically a more relevant guidance than Theorem 3 for selecting spels in the object and background so that 
the relative fuzzy «-object defined is independent of the reference spels. 

It follows from Theorems 2 and 3, by setting p = o, that Poq. = Pob.. However, the constancy of the relative 
fuzzy «-object, even in this situation where the reference spel for the object is fixed but changeable only for the 
background, requires constraints expressed in (4) and (5). 



 „_. -r raiar;Vp fti77v «-objects, namelv that their domain, that The followine theorem states an important property ot relative razzy K uujcv...a. ^ 
me iouowing uiwicm ^ r ,p      tne best path between them is contained 

is the set Pob,, is connected in the sense that for any two speis p. c t rjb., uw        p 
uv   p 

Theorem 4. For any scene C = (C, /) over (Z", a), for any fuzzy spel affinity « in C. and for any spels o. b.p and c 
in C such that p, c € Po6., the best path connecting p and c is contained m Fob.. 

3. ALGORITHMS 

In tins section, we present an algorithm, named «RFOE, for extracting the, relative fuzzy -obj^O of a **» 
C = (C/) containing a spel. say o. relative to a background containing a spel say . F£or to tins, we present 
another algorithm, named .FOE. for creating the «-connective scene of o in C. Algorithm «FOE is based on 

dynamic programming and is called by algorithm KRFOE. 

Algorithm KFOE(O) 
Input: C = (C, /), and « as denned in Section 2. 
Output: «-connectivity scene CKo = (C,/*<,)■ 0   f      ,    w     f 

Auxiliary Data Structures:    An n-D array representing CKo = (£/*.) and a queue Q ot spels. we 
Auxiliary ua ^ ^ ^ itself by C/f o for the purpose of the algorithm. 

begin .     . .. 
0. set all elements of CKo to 0 except the spel o which is set to 1; 
1. push all spels c€C such that fiK(o,c) > 0 to Q; 
2. while Q is not empty do 
3. remove a spel c from Q; 
4. find /max = rnaxdgc[min[/Äo(d), M*(c, <*)]]; 
5. »//max >/Ko(c) then 
6. Set /KO(C) = /max! 
7. push all spels e such that pK{c,e.) > IKOW to y; 

erufa/ftde; 
8. output the «-connectivity scene CKO\ 

end 

Algorithm KRFOE(O, b) 
Input: C = (C, /), and « as defined in Section 2. 

(C, /je«), (2) the /c-connectivity scene Cm = {C, fmh ^d (3) ü- 

begin 
0. set CK„ = KFOE{O)\ 

1. set C*6 = KFOEQ); 

2. /or all c € C do 
3. if fKoic) > fKb(c) then 
4. set po(c) = TJ(/(C)); 

5. eise 
6. set Mo(c) = °'> 

endif 
endfor 

7. output the relative fuzzy «-object O; 
end 

4. ITERATIVE RELATIVE FUZZY «-OBJECTS 

In this section, we introduce the key ideas behind an extension of relative connectedness to an iterative framework, 
while still satisfying the key ideas behind relative connectedness developed in Section 2. 



Figure 2. Illustration of the basic ideas of iterative relative connectivity. 

Consider the situation illustrated in Figure 2 which demonstrates three objects 0\, Oz and O3. It is very likely 
that, for a spei such as c, PK(O, c) a PK (b, c) because of the blurring that takes place in those parts where 0\ and Oz 
come close together. In this case, the stongest path from b to c is likely to pass through the "core" of 0\ indicated 
by the dotted curve in the figure. This core which is roughly P0(,„, can be detected first and then excluded from 
consideration in a subsequent iteration for any path from b to c to pass through. Then, we can substantially weaken 
the strongest path from b to c compared to the strongest path from 0 to c which is still allowed to pass through 
the core. This leads us to an iterative strategy to grow from o (and so complementarily from b) to more accurately 
capture 0\ (and O2) than if a single shot relative connectedness strategy is used. An outline of this formulation is 
given below. 

For any fuzzy affinity K and any two spels c,deC, define 

^(cd)   =   pK(c,d) 

^6.   =   {c I c € C and pK{o,e) > AI*O (6,c)}. 

(6) 

(') 

Note that P%K is exactly the same as Pot., defined in (1). Assuming that P^1 and K^
1
 for any integer i, P*6^ and 

*od ^e denned as follows. For all c, d 6 C 

' c or deP£ , d) _ r 0,       if < 
fJ^K'.^c, \ pK(c,d),   otherwise, 

Pofc.    =    {c I c € C and pK(o, c) > pK^(b, c)}. 

(8) 

(9) 

An iterative relative fuzzy iC-object C of a scene C = (C. f) containing a spel 0 relative to a background containing 
a spel b is the fuzzy subset of C defined by the membership function 

ßo'[C)     { 0, otherwise. (10) 



.    ♦ ar,h»T,n0A SD MR aneioeram of a patient's left thigh, (a) Whole vessel 

via relative fuzzy connectivity, (c) Same as (b) for vein. 

We are currently pursuing a rigorous mathematical and experimental study of the properties, robustness and effec- 
^eSssTtS LLive relative fuzzy connectedness strategy for image segmentation. 

5. RESULTS AND DISCUSSION 
*r x- — „f rt. r,mr.n<!Prf rplative fuzzv connectedness method both qualita- 

In this section, we demonstrate the;*^« itSÄL^» ™*hod 0Q a 3D COntraSt enhaMd 

tively and quantitatively. Figure 3 demonstrates the resuits orapp stniCTure which was automatically seg- 
MR angiogram of a patient's left thigh. Figure 3(a) «^ *^^?td^^ using shell rendering." 
mented from the MR angiogram using scale-based fuzzjr c"»*>*« ^ coLctedness white Figure 3(c) shows 

Figure 3(b) shows the '^^^^2^^^^^ artery and inside vl The same 

angiography scene has a domain of 512 x 512 x 60 and a voxel size of 0.94mm x 0.94mm    1 80mm. 

was then obtained by assigning to every pixel in the segmented whit> "™*?»P£ ^ of the rest of 

average intensity within the segmented white matter region m ^ «g^^^S?tStoo in the original 
the pixels a constant intensity equal to ^^^f^^^^f^^ uSg a 2D GauSan 
slice. From the simulated scene, we created the actual test^«^J a^ound

S
comp

S
OIient from 0 to 

kernel, (b) a 0-mean Gaussian correlated no*e and W a slowly v^rymg (ramp W P^^ ^ 

100 across the columns. Figure 4(b) shows the fi^^P»01; ^vronnectivitv scene the best possible hard 
connectivity scene for the phantom scene offigure,4 b)^om ^^™™ZJ^ cL is denned as the 
segmentation of white matter region was obtained as follows. A^stance J^een w ^ connectivity scene 
peWtage of normalized counts of pixel mismatches between ^^J^JJ^J^^ the white matter 
was then segmented at a threshold at which the distance ^.J^^S^iri segmentation for 
scene (i.e., the initial truth) of Figure 4(a) bj—- Fg« 4(d -^^^^Sd was selected by 
white matter region from the fuzzy connectivity scene of Figure 4(c). (>otetna _ ^^ 

exhaustive search.) The computed distance for the ^P^.^^^J^^^^ segmented 
the segmented white matter region using relative fuzzy «JU^^;^'J^PU^^2 S reference pixels 
scene°, 2.60409. In both cases, the same parameters for ^ ^^^^ S^^-^ctiviQr The 

&ts=^ 



Figure 4. Results of application of relative fuzzy connectivity on a 2D phantom, (a) Binary white matter region 
manually segmented out from a 2D slice of a 3D MR scene of a multiple sclerosis patient's head, (b) Test phantom 
scene generated from (a) after adding noise, blurring and background variation, (c) Scale-based fuzzy connectivity 
scene for white matter region, (d) Hard segmented white matter region obtained from (c) at the best possible 
threshold, (e) Hard segmented white matter region obtained via relative fuzzy connectivity. 

Figures 4(d) and (e) are visually very close, the segmentation using relative connectivity is closer to the initial truth. 
This observation may be argued by the fact that in absolute fuzzy connectivity, a fixed global threshold is chosen 
while in relative connectivity the competition between objects (foreground and background) is spatially variant. 
Effectively, relative connectedness allows a variable threshold in the strength of connectivity in different parts of the 
scene. Most importantly, to achieve the best threshold in absolute fuzzy connectivity, the initial phantom truth is 
used which is not available in any real application. Relative fuzzy connectivity eliminates this need. 

6. CONCLUSION 

Based on our previously developed framework of fuzzy connectedness and object definition,3,20 we have proposed 
an extension of this framework that considers all relevant objects simultaneously. The fundamental premise on 
which this is developed is that an object gets defined in an image by the existence of other co-objects (including the 
background). We consider certain regions in the image as part of the object because these regions hang-together 
more strongly with object elements than with background elements. 

One drawback of the previous fuzzy connectivity theory is having to select a threshold for the fuzzy connectivity 
scene to delineate the object region. Relative fuzzy connectivity provides an effective and robust solution to this 
problem. The robustness of relative fuzzy objects with respect to reference pixel selection has been stated. An 
algorithm for computing relative fuzzy connected objects using dynamic programming has also been pre-ented. The 
concept of iterative relative fuzzy connectivity has been introduced. 

We have demonstrated the effectiveness of the proposed method in artery-vein separation in a contrast enhanced 
3D MR angiogram. Based on a 2D phantom scene, we have shown that the segmentation by relative fuzzy connectivity 
is better than that obtainable via the best thresholding of the absolute fuzzy-connectivity scene. More extensive 
experiments in several ongoing applications are currently undergoing, as well as the development of th* theory for 
multiple objects. 
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Clutter-Free Volume Rendering for Magnetic Resonance 
Angiography Using Fuzzy Connectedness 
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ABSTRACT: The purpose of this paper is to describe a practical 
method for the clutter-free, three-dimensional (3D) volume rendering 
of magnetic resonance angiographic (MRA) data. In MRA, clutter due 
to artifacts or nearby high-intensity structures prevents clear visual- 
ization of the vessel under investigation. We offer an alternative to the 
manual editing that is commonly used to remove clutter. The method 
is near automatic and requires the user to point at structures on a 3D 
maximum intensity projection (MIP) display. It utilizes recently devel- 
oped fuzzy connected object delineation algorithms to extract the 
vessels of interest. Because the resulting definition is nonbinary, it can 
be displayed via MIP or more sophisticated volume-rendering tech- 
niques. The improved renditions are illustrated with several MRA 
studies. Implementation of the fuzzy connectedness method proved 
to be effective in removing the associated clutter in the images and, 
in some cases, dramatically improving visibility. Additionally, vessels 
could be extracted with a nominal number of points selected within 
the object by the user that retained most of the information present in 
the conventional MIP display. This could all be performed in a prac- 
tical time frame: the first vessel delineation in 30 s, subsequent 
delineations in 2-10 s per view, all on a 100-MHz Pentium PC. 
Automatic delineation of vessels for 3D MRA visualization is feasible 
via fuzzy connectedness principles. The method retains the original 
intensity constitution, an advantage of the MIP method, and mostly 
eliminates the clutter commonly observed in MIP. Its speed and 
effectiveness make it feasible for routine clinical use. © 2000 John Wiley 
& Sons, Inc. Int J Imaging Syst Technol, 11, 62-70, 2000 

I. INTRODUCTION 
Magnetic resonance angiography (MRA) is a relatively recent de- 
velopment (compared to X-ray angiography). It has better sensitivity 
for the detection of vascular abnormalities, such as aneurysms, than 
routine magnetic resonance imaging (MRI). MRA methods are 
based on the same principles as flow quantitation techniques: time- 
of-flight (TOF) and phase-sensitive principles. Regardless of the 
specific techniques used to image the flowing blood, it is necessary 
to isolate the vascular system from the surrounding stationary tissues 
(Stark and Bradley, 1992). In MRA, a major concern is to distin- 
guish the vessel in question from the additional clutter introduced by 
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artifacts. For the three-dimensional (3D) display of MRA data, 
maximum intensity projection (MIP) is the most commonly used 
technique (Stark and Bradley, 1992; Mistretta, 1993; Owen et al., 
1993; Prince et al, 1995; Napel et al., 1992; Bluemke and Cham- 
bers, 1995). In MIP, the intensity (shading) assigned to a pixel in the 
rendered picture represents the maximum of the intensities of the 
voxels in the input volume image along a line from the pixel that is 
orthogonal to the picture plane. The high-intensity points in space 
are projected to generate a MR angiogram. Although this is concep- 
tually and computationally a simple technique, it has several draw- 
backs. These include the presence of clutter in display, lack of 
information about structural juxtaposition and constitution, the cre- 
ation of irregular depth cues, and the lack of a sense of the real size 
of objects. A limitation of the method is the lack of selectivity 
because every signal intense structure in the selected volume is 
depicted (Weite et al., 1996). Nonvascular high-intensity patterns 
are caused due to artifacts during MRI (e.g., susceptibility artifacts, 
inhomogeneities of the RF fields). Furthermore, projections from 
different orientations do not necessarily contain the same objects (as 
they may or may not be obscured by another object). The MIP 
procedure along a projection ray path is commutative, i.e., two MIP 
images computed 180° apart are equivalent. Each MIP image thus 
has two equally valid perspectives (correct and mirrored) so that one 
can only guess at the true image orientation (Verdonck, 1996). 

Clutter appears in MIP displays either due to high-intensity 
artifacts, such as those stemming from surface coils, or to uninter- 
esting vessels. Creation of clutter-free MIP displays has remained a 
challenge in tomographic angiography mainly because the problem 
originates in the difficult task of image segmentation. The successful 
solutions to this problem have invariably involved some form of 
slice-by-slice help from a human operator in defining the region of 
the vessel in the given volume image (Shiffman et al., 1996). 

The lack of information about juxtaposed structures (e.g., as to 
which vessel is in front) in MIP displays is due to the lack of any 
structure shading in the MIP method. Objects such as plaques and 
calcifications usually have a graded constitution. MIP cannot capture 
this information in its displays. Because of this, various techniques 
have been developed. Such techniques include TOF and phase- 
contrast (PC) MRA. In both of these cases, these methods produce 
a projected image similar to a conventional angiogram. However, 
for analysis, both the projection and the individual slices that make 
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up the image must be used (Shiffman et al, 1996; Atlas et al., 1997). 
Sophisticated rendering strategies that account for reflection, trans- 
mission, and emission through various fuzzy interfaces through the 
vasculature are needed for this purpose. 

In an attempt to overcome some of the above problems, we have 
devised an approach of vessel definition and rendering based on a 
recently developed concept of fuzzy connectedness (Udupa and 
Samarasekera, 1996). In this strategy, an object (such as a vascular 
tree) is considered to be a fuzzy entity where the object elements 
(voxels) "hang together" with varying degrees of strength. The 
concept and the associated algorithms have been effectively applied 
quite extensively to MRI segmentation of the brain (Udupa et al., 
1997a, b; Samarasekera et al, 1997; Miki et al., 1997, 1998; Phillips 
et al., 1998) and computed tomographic (CT)-based craniofacial 
applications (Udupa et al., 1997a, b). In this paper, we explore their 
effectiveness for the clutter-free display of vessels in MRA data. 
Their adaptation for MRA is different from that for these other 
applications. This consists of two steps: fuzzy object definition and 
rendering. These are described in detail in the next section. 

II. METHODS 
A. Fuzzy Connected Vessel Definition. The fuzzy connected 
object definition concepts (Udupa and Samarasekera, 1996) are 
applicable to n-dimensional images. Because our application of 
these ideas focuses on 3D MRA images, the description here will be 
for 3D volume images. We think of a 3D volume image / as a pair 
/ = (V, f) where V is a 3D array of voxels, and for any voxel v in 
V, f(v) represents the image intensity. On the 3D grid system 
defined by the 3D voxel array V in a given 3D volume image /, we 
define a fuzzy adjacency relation a. It assigns to every pair (w, v) of 
voxels in V a degree jxa{u, v) of adjacency between them. This 
relation a is intended to be a local phenomenon for capturing the 
blurring property of the imaging device. 

Now we think of the given volume image / as being defined over 
this fuzzy grid system. We define over this fuzzy grid system 
another fuzzy relation, called fuzzy affinity K, on V, that assigns a 
degree of affinity /uK(w, v) to every pair (u, v) of voxels in V. This 
relation is also local, but it takes into account how close u and v are 
spatially as well as in their image intensities, f(u) and /(v), and 
possibly also in their image-derived properties such as the magni- 
tude of the image intensity gradient. For MRA, we devised the 
following fuzzy affinities. These were arrived at after extensive 
experimentation within our software framework (Udupa et al., 
1994), which allows combining several image-derived properties 
including the original intensities to define affinities. We associate 
two "features," denoted <£|(w, v) and <f>2(u, v), with every pair of 
voxels in any volume image / = (V, f) as 

,(w, v) = max(/(w),/(i/}), 

<MK, v) = \f(u)-f(v)\. 

(1) 

(2) 

The affinity, IJLK(U, V), between u and v based on 4>, and 4>2 and /xQ 

is given by 

HK(u, v) = M„(«, v)\ I!    0.5 + 0.5 J iHU' V} ~ m,) (3) 

where 

ßa(u, v) 

1,    if u and v differ in at most one coordinate by 1, 
0,    otherwise, 

f,(x) = 

and 

x + 

0, 

1, 

t2(x) 

if-i<jt<- 
2 

ifx<-i 

ifx>i 

(4) 

(5) 

(6) 

The idea behind the above affinity relation is the following. If u + 
v and u and v&o not share a voxel face, their affinity is 0. Otherwise, 
their affinity depends on both the larger of the two intensities, 
denoted c/>, {u, v), and their difference, 4>2(u, v), as per the function 
in Eq. (3). The smaller the difference and the greater the larger 
value, the greater is the affinity. There are altogether four parame- 
ters, m |, <r,, m2, cr2> mat characterize the affinity. These parameters 
are determined via "training." The operator "paints" some typical 
vessel regions in a display of one slice of the volume image using 
the mouse cursor. The software subsequently determines the mean 
and standard deviation of the features </>, and <j>2 within this region. 
The value of m, is set to the mean for </>,, and ax is set to roughly 
four times the computed standard deviation. (The logic behind this 
is that with two standard deviations on either side of the mean, we 
would capture roughly 97% of the samples in a Gaussian distribu- 
tion. Under this distribution, therefore, most of the painted region 
will be included with nonzero affinity.) The value for m2 is set to 0, 
and for <r2, four times the standard deviation for <p2. Note that the 
training to learn the parameters is needed in only in one slice. More 
regions may be painted, but this is not necessary. 

Our aim is to define a 3D object, such as a vascular tree, as a 
fuzzy connected entity. This is facilitated through another fuzzy 

Figure 1.   In determining a fuzzy connected object, the strength of all 
paths between all pairs of voxels (such as u, v) is considered. 
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Figure 2. (a) MIP display of a body shell, (b) MIP display of the fuzzy connected vessels extracted from the body shell depicted in (a), (c) A 
volume rendition of the fuzzy connected vessels, (d) Interactive slice selection guided by an MIP display. The MRI corresponding to the depicted 
slice is displayed. 

relation defined on V, called fuzzy connectedness, K. This is a 
global phenomenon as compared to a and K. The strength of 
connectedness, ^K(u, v), between any two voxels n and r; is 
determined as follows. There are many possible paths between u and 
v, where each path is a sequence of nearby voxels starting from u 
and ending on v. Figure 1 shows three paths among the possible 
paths between u and v. Each path has a strength associated with it, 
which is simply the smallest of the affinities between successive 
voxels in the path. Finally, the strength of connectedness JLIA.(H, V) 

between u and v is the largest of the strengths of all paths between 
u and v. 

A fuzzy object of strength x is a pool of voxels (together with 
their strength values) such that, between any two voxels n and x> in 
the pool, the strength of connectedness JU,A-(», i<) s x, whereas 
between any two voxels v and \v such that u is in the pool and w is 

not, the strength \iK(u, v) < x. Typically, a small value of x, no 
greater than 0.1, is adequate to separate the object from the rest of 
the image. 

For completeness, we present one algorithm for fuzzy connected 
object tracking. More details on the algorithm and other algorithms 
and the analysis of their behavior can be found in Udupa and 
Samarasekera (1996). This algorithm takes as input an MR A volume 
image / = (V,/), a voxel o specified in the vessel region, affinity 
K (as defined in Eqs. 1-6), and a threshold .v. Its output is a fuzzy 
object O represented as a volume image O = (V,f„), such that for 
any voxel t» in the pool corresponding to the fuzzy object,/„(t;) = 
f(x>), and/„(r») = 0 if t; is not in the pool. The algorithm uses a 
queue Q and the volume image O as auxiliary data structures. It is 
a slightly modified version of algorithm KXFOE of (Udupa and 
Samarasekera. 1996). 
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ALGORITHM KXBFT 

begin 
set/0(c) = 0 for all voxels c of V; 
initialize queue Q to contain just o; 
mark o; 
repeat 

dequeue a voxel q from Q; 
for each unmarked 6-neighbor w of q do 

if iJLK(q, w) S x then 
mark w; 
enqueue w on Q; 

endif; 
endfor; 

until Q is empty; 
for each marked voxel c do 

set/0(c) =/(c); 

endfc"".' 
end 

B. Fuzzy Object Rendering. The underlying rendering princi- 
ple is based on a method called shell rendering (Udupa and Odhner, 
1993). In shell rendering, potentially every voxel v in / contributes 
to the rendered picture. This contribution is influenced in three ways: 
(1) reflection of light from v depending on the strength of the surface 
contained in v, (2) emission depending on the degree of object 
membership of v, and (3) attenuation depending on the opacity 
assigned to v. The shell rendering concept allows a continuum from 
only reflection-based hard surface rendering to a variety of degrees 
of translucent renditions that mix reflection, emission, and transmis- 
sion in different proportions. 

A shell is a data structure that allows rapid rendering of fuzzy 
objects by retaining only those voxels in its representation that 
make nonnegligle contribution to the rendered picture. With each 
voxel, several other items of information are stored, including the 
voxel's degree of membership in the object, the magnitude of the 
gradient at the voxel computed from the given volume image, and 
the direction of the gradient. In MRA, for example, the voxels 
outside the body and even those far away from the vessel bound- 
ary need not be stored in the shell. However, before the vessels 
are actually detected, we cannot be sure as to which voxels inside 
the body do not belong to the vessels. Therefore, we first create 
a shell that stores only the voxels that are inside the body, 
together with their descriptions. These voxels are easily identified 
by thresholding. For further reference, we will call this a body 
shell. This shell is created automatically without loss of any 
relevant information when the image data are transferred from 
the MR scanner to the viewing workstation via our picture 
archiving and communication system. 

We then create an MIP display of the body shell, with 3D 
orientation selections under user control. We utilize this display, 
although cluttered, to guide the user in selecting the vessel structures 
that need to be extracted from the body shell. This selection is done 
by pointing the cursor at a vessel structure and clicking the mouse 
button. By this action, the user specifies a voxel in the array V. This 
specification is made possible by storing the coordinates of the 
maximum intensity voxel that contributed to the rendition. Several 
such voxels may be specified. Typically, a voxel should be specified 
for each separate vessel structure that is either not connected to or 
loosely connected to other structures for which voxels have already 
been specified. Once this specification is completed and the process 

to detect fuzzy connected objects is initiated, the fuzzy connected 
objects containing the specified voxels are first detected using algo- 
rithm KXBFT. These are then converted to a shell representation and 
then displayed using MIP. 

C. Image Data. We utilize five patient MRA data sets to dem- 
onstrate the effectiveness of the fuzzy connected object detection 
and rendering methods. These data sets were acquired as a stack of 
rapid 2D gradient echo images using TOF effects to produce vessel 
images brighter than adjacent stationary structures. The matrix size 
was 256 X 256, with the number of slices varying between 86 and 
140. The voxel sizes in these data sets ranged from 1.02 X 1.02 X 
3 mm to 1.17 X 1.17 X 3 mm. 

All algorithms were implemented within the 3DVIEWNIX soft- 
ware system (Udupa et al., 1994) and all experiments were per- 
formed using this system. 

III. RESULTS 
The implementation of the methods has been optimized for routine 
interactive use in the clinical vascular imaging section. In a routine 
use, the following steps are involved. The timings reported are all 
for a 100-MHz Pentium PC with 256 MB RAM. 

Step 1: The image data are transferred to the workstation and 
the body shell is created simultaneously and automati- 
cally. This typically takes 1 min. 

Step 2: MIP display of the body shell is rendered. This takes 
5-10 s per view. Figure 2(a) gives an example. 

Step 3: One or more points are specified on the vessels in this 
MIP display. A fuzzy connected object of a specified 
strength x (chosen on a slider) containing the points is 
extracted and rendered using MIP display. This opera- 
tion takes 20 s. Figure 2(b) shows the fuzzy connected 
vessels extracted from the body shell in Figure 2(a). 

Step 4: If more vessels are to be selected, additional points are 
specified.  Subsequently, the fuzzy connected object 
containing all points specified so far is extracted and 
rendered via MIP. This step takes about 2-5 s. 

Step 5: The fuzzy connected vessel structure is visualized at a 
fraction of a second per view via MIP or more sophis- 
ticated volume rendering that takes into account trans- 
mission, reflection, and emission. Figure 2(c) shows 
such a rendition of the vessels in Figure 2(b). 

Step 6: For a closer scrutiny of selected regions in the vessel, cut 
planes of arbitrary orientation are interactively selected 
and stepped along vessels to determine the image inten- 
sity values on those planes. Figure 2(d) illustrates this 
operation. The operation takes 5-10 s the first time and 
subsequently about 1-2 s. 

Figure 3 shows different renditions of the five data sets. The rows 
correspond to the different data sets. The first column shows MIP 
renditions of the five body shells. The second column shows MIP 
renditions of the fuzzy connected vessels extracted from the body 
shells. All data sets required one to three points to extract the vessels 
shown. 

IV. DISCUSSION 
As seen from all patient study examples, fuzzy connected vessel 
definition is remarkably effective in removing the clutter, with a 
dramatic improvement in visibility in some cases. Most of the 
vessels seen in the MIP rendition of the body shell are included in 
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Figure 3.   Column 1: MIP renditions of the body shells of the five data sets. Column 2: MIP renditions of the fuzzy connected vessels extracted 
from the body shells. Column 3: Volume rendering of the fuzzy connected vessels. 

the fuzzy connected object. We emphasize that in the fuzzy con- 
nected objects, all original MR intensity values that matter (namely, 
those in the vessels) are retained in the fuzzy connected object. In 
order to test the validity of this claim, an operator outlined the major 
vessel regions in every slice for three among the five studies (shown 
in columns 1, 2, and 3 in Fig. 3). Denoting the set of voxels defined 
in this fashion for a study by X,, we computed the fraction (|X, — 
Xyj/|X,|) X 100, where Xx denotes the set of voxels determined by 
the algorithm to be in the fuzzy object (i.e., with strength of 

connectedness > x) for the same study. Here | • | denotes the 
cardinality of the set. |X, — Xf\ represents the number of voxels in 
X, that are not in Xr. Clearly, the extreme values of this fraction are 
0 and 100, assuming that |X,| + 0 for the study. The values of this 
fraction for the three studies were 0.1487, 0.2201, and 0.3174. 

The most time-consuming step in our approach after creating the 
body shell is the first fuzzy connected vessel definition step, requir- 
ing about 20 s. The computations involved in algorithm KXBFT are 
both computation and memory intensive. With 64 MB RAM (as 
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Figure 3.   {Continued) 

opposed to 256 MB), the time requirement for this jumps to 2 min, 
becoming noninteractive and unsuitable in a clinical vascular imag- 
ing setting. Interestingly, on a 300-MHz Pentium PC (running under 
Linux) with 256 MB RAM, all operations described in Steps 1-6 ran 
at interactive speeds. This is particularly relevant to the cost-con- 
scious health care environment considering how inexpensive the 
Pentium PCs are today. 

Volume-rendering operations that take into account transmission, 
emission, and reflection allow more flexibility for portraying the 
heterogeneity of MR signal intensities in the vessels than the MIP 
method. MIP rendering does not portray the geometric relationships 
among and the shapes of the vessels properly because of the lack of 
shading coming from the above components. This is demonstrated in 
Figures 4(a)-(d), which show an MIP rendition of a fuzzy connected 
vessel and its three volume renditions at different combinations of 
the three properties. Note how the heterogeneity of MR image 
intensities comes through in the displays, especially in Figure 4(d). 
The extra computational time (1-2 s) for such renditions over MIP 
for vessels is negligible. 

One possible disadvantage of fuzzy connected MIP and volume 
rendering over direct MIP rendering of the body shell is that the 
contextual information coming from the faintly portrayed body 
contour in the latter display is lacking in the former. Such informa- 
tion is potentially useful in providing constantly an orientation to the 
viewer for extremely unfamiliar viewing directions. The body sur- 
face information is easily grafted into the fuzzy connected renditions 
by segmenting the body at the threshold at which the body shell was 

created and by merging the shells corresponding to the body surface 
obtained in this fashion and the fuzzy connected vessels. Figure 5(b) 
illustrates a volume rendition of a composite shell obtained in this 
fashion. Figure 5(a) shows, for comparison, an MIP rendition of the 
original body shell. 

There is no guarantee in our system that with a single seed, all 
aspects of the vessels depicted in the MIP rendition are delineated by 
the fuzzy connectedness method. To include vessels that are left out, 
the user simply has to select more seed points in such vessels in 
subsequent stages after verifying the resulting shell renditions, as 
described in Step 4. 

We have not tested the system specifically for its ability to detect 
stenosis better than in the original MIP renditions. This requires 
further work involving observer studies and comparison with X-ray 
angiography. However, as indicated by our experiment comparing 
manual tracing, our method loses less than 0.5% of the voxels 
identified by an operator. This, combined with the fact that our 
method retains all original intensity information, indicates that the 
MIP renditions of the delineated vessels contain almost all the 
information contained in the original MIP renditions minus the 
clutter. The proof of this claim requires further validation. 

The fuzzy objects delineated by our method may be utilized for 
measuring vessel diameters. Such tools already exist in 3DVIEW- 
NIX. However, these measurements need to be carefully calibrated 
to ensure that they agree with truth. We have not done this testing in 
this work. 
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Figure 4.    MIP rendition of a fuzzy connected vessel (a) and its volume renditions (b-d) at different high settings of transmission (b), emission 
(c), and reflection (d). 

V. CONCLUDING REMARKS 
We have presented an approach and a system for removing clutter in 
MRA with minimal user effort as an alternative to the slice-by-slicc 
removal of obscuration that is currently practiced. The approach is 
based on a theory of fuzzy connectedness of object regions that 

utilizes information from all connecting paths between all possible 
pairs of voxels. We have demonstrated that the approach is practi- 
cally viable, requiring less than 15 s for all operations and less than 
4 s for all rendering operations on a 300-MHz Pentium PC. We have 
not carried out rigorous evaluation studies for specific clinical tasks 
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(a) (b) 
Figure 5.   (a) MIP rendition of the body shell of an MRA data set. (b) A combined display via volume rendering of the body surface and fuzzy 
connected vessels extracted from the body shell in (a). 

comparing the MIP method commonly used in clinical MRA today 
with the proposed fuzzy connected strategies. However, we have 
presented evidence based on five clinical studies that the proposed 
method, at the least, retains most of the information present in the 
conventional MIP display, removes most of the obscuring clutter, 
and possibly portrays this information better than conventional MIP. 

Although we have not experimented with CT angiography, we 
believe that the approach presented here is applicable to CT angiog- 

raphy for separating vessels from high-intensity structures, such as 
bones. We are currently investigating ways to separate arteries and 
veins in MRA images using fuzzy connectedness principles. 
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ABSTRACT 

Multiple Sclerosis (MS) is an acquired disease of the central nervous system. Subjective cognitive and ambulatory test scores 
on a scale called EDSS are currently utilized to assess the disease severity. Various MRI protocols are being investigated to 
study the disease based on how it manifests itself in the images. In an attempt to eventually replace EDSS by an objective 
measure to assess the natural course of the disease and its response to therapy, we have developed image segmentation 
methods based on fuzzy connectedness to quantify various objects in multiprotocol MRI. These include the macroscopic 
objects such as lesions, the grey matter (GM), white matter (WM), cerebrospinal fluid (CSF), and brain parenchyma as well 
as the microscopic aspects of the diseased WM Over 1000 studies have been processed to date. By fer the strongest 
correlations with the clinical measures were demonstrated by the Magnetization Transfer Ratio (MTR) histogram parameters 
obtained for the various segmented tissue regions emphasizing the importance of considering the nticrosccipi^diffused nature 
of the disease in the individual tissue regions. Brain parenchymal volume also demonstrated a strong correlation with the 
clinical measures indicating that brain atrophy is an important indicator of the disease. Fuzzy connectedness is a viable 
segmentation method for studying MS. 

Keywords: Image segmentation, Multiple Sclerosis, MR imaging, fuzzy connectedness. 

1. INTRODUCTION 

MS is an acquired disease of the central nervous system (CNS) characterized primarily by multifocal inflammation and 
destruction of myelin. Inflammation and edema are accompanied by different degrees of demyelination and destruction of 
oligodendrocytes, and may be followed by remyelination, axonal loss' and/or gliosis. The disease was first characterized by 
Charcot1 and has since been investigated extensively. The highest frequency of MS occurs in northern and central Europe, 
Canada, the USA, and New Zealand and South of Australia.2 In the US, it affects approximately 350^000 adults and stands 
out as the most frequent cause of non-traumatic neurologic disability in young and middle-aged adults. In its advanced state, 
the disease may severely impair the ambulatory ability and may even cause death. 

MS is usually classified into three subtypes: (1) Relapsing-remitting (RR): Clearly defined disease relapses with full 
recovery, or with sequelae and residual deficit upon recovery, but there is no disease progression between relapses. (2) 
Secondary-progressive (SP): Initial RR disease course followed by gradual progression with or without occasional super- 
imposed relapses. (3) Chrome-progressive (CP): Gradual progression from the onset with occasional plateaus and temporary 
minor improvements. The most commonly used scale to clinically measure disease progression in MS is the Expanded 
Disability Status Scale (EDSS) introduced by Kurtzke.4 This scale extends from 0 to 10, and is based on the functional 
systems (visual, brainstem, pyramidal, cerebella, sensory, bowel/bladder, and cerebral) in the lower scores, and on 
ambulation in the higher scores. The clinical quantification of disease severity is subjective and sometimes equivocal. The 
development of new treatments demands objective outcome measures for relatively short trials. Therefore, MR imaging has 
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become one of the most important paraclinical tests for diagnosing MS and in monitoring disease progression in MS. As 
described in the rest of this section, a variety of MRI protocols have been utilized in understanding this disease. 

1.1. T2-weighted imaging (T2WI) 

The sensitivity of T2WI in the detection of MS has long been recognized.5-6 MS lesions appear hyperintense in T2WI. The 
clinical course of MS is mainly defined by the "baseline" disability of the patient, also called the disease "burden". The extent 
of lesions on T2WI, expressed usually by the total volume of lesions (T2LV), is currently regarded as the MRI measure of 
this disease burden. Usually dual echo T2 and proton density (PD) images are acquired and the lesions are detected using the 
combined information presented in the two images. The positive effects of three currently available injectable medications 
(Betaseron, Avonex, Copaxone) on T2 lesion load (T2LV) have been demonstrated.T'i0 Despite impressive progress in the 
treatment and understanding of MS, both its etiology and pathogenesis still remain incompletely understood. An important 
limitation of T2WI is its low pathological specificity.11 All histopathological features of MS, such as inflammation, edema, 
demyelination, axonal loss, gliosis and remyelination are seen as hyperintense lesions on T2WI while not all of these 
processes are clinically relevant. Reports from several research groups have shown only weak correlations between clinical 
measures of disability and the traditional T2 lesion load.12'14 There are also contradictory results among these reports - for 
example, that T2LV increases consistently and significantly in RR MS13,15 and that it does not12,16 The reasons for such 
disagreements include imaging and processing methodological differences, subjectivity of EDSS and the non-accountability 
of the microscopic disease. In short, there is increasing evidence that T2LV is not a reliable measure of disease/disability in 
spite of its use in clinical trials. 

12. Tl-weighted imaging with gadolinium enhancement (T1W1E) 

In MS, gadolinium (-DTPA) enhancement on MR images is characterized by blood brain barrier (BBB) breakdown and 
intense inflammation which represents the acute stage of the evolution of MS.17, l* In T1WIE, gadolinium enhancement 
appears as a homogenous strongly hyperintense lesion or as a ring-shaped hyper-intensity at the edge of chronic reactivated 
lesions. Enhancement is more sensitive than either clinical examination or T2WI in detecting disease activity and potentially 
can separate clinical groups.19 Delayed imaging (50-60 minutes after gadolinium injection), triple doses of gadolinium, and a 
single dose with MT saturation to suppress normal brain have all been shown to increase the number of detectable enhancing 
lesions. CThere are disadvantages to high-dose contrast studies including possibly more false lesions, more scan time and 
more expense.) These results suggest that enhancement is not an "all or none" phenomenon. Enhancement may precede the 
development of T2 hyper-intensity and clinical symptoms, which suggest that the BBB abnormality may be the crucial event 
in the inflammatory cascade.13,21 Further, we know that there is microscopic manifestation of the disease in normal appearing 
white mauer (NAWM) which is not apparent under visual examination of the images. 

L3. Magnetization transfer imaging (MTI) 

MS is now believed to be a diffuse process that extensively involves the white matter and is not restricted to the focal regions 
cf disease activity visible as "lesions" in conventional T2, PD and T1WIE images. This notion came about mainly from 
magnetization transfer (MT) image analysis,22 but subsequently also supported by postmortem23 revealing microscopic 
disease characterized by edema, cellular infiltration and demyelination in macroscopically normal appearing white matter. In 
MT imaging,24 two consecutive sets of images are required, one with off-resonance pre-saturation of the relatively immobile 
macromolecular protons and one without A magnetization transfer ratio (MTR) image is then computed from the two images 
according to (M„ • MJ / M„ where M, and M0 are pixel intensities with and without pre-saturation. Published studies2^27 

suggest that the MTR values for white matter in normal subjects are highly reproducible within each institution with a 
variation of less than 2%. Several studies have demonstrated that the microscopic aspect of the disease can be characterized 
by the MTR values measured in different regions (WM, lesions, the periphery of lesions) in a much more specific fashion 
thanbyT2LV. 

1.4. Tl-weighted imaging (T1WI) 

Another standard MRI technique that is routinely used in MS is T1WI (SE). It often shows hypo-intense areas which were 
suggested to represent areas of axonal loss and gliosis.23 In a recent quantitative study,29 a significant correlation was 
reported between increase in disability and increase in the volume of these lesions (T1LV). In another study involving a 
larger cohort of patients30 including RR and SP patients, a strong correlation was found only in the SP group between 
increase in T1LV and increase in disability over 3 years of follow-up that was higher than the increase in T1LV. In RR 



l*^r,xHnri< 27-3 then the hieher rate of new T2 lesions accompanied by signal loss on T1WI could renect a aencit m 
loss or gliosis,      men uie aigncr «w ui u«. «„«._„,..„,„" acrivitv nerhaDS exhausts repan- mechanisms leading to 

Joups probably relate to a quantitative difference in repair mechanisms. 

u/. have been develomne MR image analysis methods for MS since 1993. Our approaches are guided by two premises. First, 
Jl^reS r^Sc object have a heterogeneous composition with or without the disease. Treating them in a 
L^ S"i bv cLSS a voxel to contain either 100% or 0% tissue material is unrealistic and inaccurate. The 
^SrmeftcS Ä quantitative measures derived from them that we have devised take into account the 
fSSS and mTfSnS mherent in tissue regions. Second, as we have seen from the description in this section 
2S £^^<KS aspects of th?Ms disease puzzle. We have therefore taken a mumprotocol approach 
SfS«offiSoSrmcab cuSntiy employed in MS imaging and attempt to get a composite understanding; of 
jS^Siw SSSSig me disease through image derived parameters. In Section 2, we describe the methods 
^SSiSS^SSSSSn from the varioulMRI protocols, and in Section 3, we summarize the dradMobs 
2ffoS3SSifrsS!l 4, we summarize the lessons learned from this experience and the outstanding problems 

that need to be addressed. 

2. METOHDS 

2.1 Data acquisition 

The MRI wotocols we have been using in our patient studies are listed in the following table. Every patient recruited in our 
S^Ä^uSnTSted in' the table. Our image database currently consists of die foUowmg^mberof g»u 
audies and 3D volume images that have been processed by the methods described in **m* 690 T2WI smdies, 660 Tl 
studies each with and without contrast, 670 MT studies, altogether 100 patients and over 4000 3D scenes. 

Pulse Seq. Plane TR(ms) TE(ms) Slice Th (mm) Matrix NEX FOV (cm) 

FSEVE AXIAL 2500 18,90 3 192 1 22 

3DMTVasTof AXIAL 106 5 5 128 1 22 

SE AXIAL 600 27 3 192 1 22 

SEwithGd AXIAL 600 27 3 192 1 22 

The T2 and PD images in these acquisitions are in registration since they are acquired simultaneously. Similarly i&™J** 
images are also in registration. However, between these two sets and among other image data, registration cannot be 
guaranteed. 

2.2. Fuzzy connectedness image segmentation 

The method of fuzzy connectedness forms the essential underpinning of all segmentation algorithms utilized.ini an'MS 
ZgTmtJs Z. Therefore, we will first give an outline of its principles. These principles are apphcableto»- 
dhnensSI vector-valued scenes. However, our description will be confined to the three-dimensional case and to scalar- 

valued scenes. 

We represent a volume image, called a 3D scene {scene for short) 6 by a pair e = (C f) where C is a rectangular array of 
voxels, called the scene domain, and/is a function that assigns to every voxel ceC an intensiv value jfcj^°m * ™*e ^ 
where Land H are integers. Objects such as WM in the brain are manifest in scenes with a heterogeneity of Foperty values 



(such as PD) because of the heterogeneity of material composition inherent in the object, and noise, blurring and background 
variations introduced by the imaging device. In spite of this graded composition of intensity values within object regions, 
human readers perceive regions in the scene belonging to the same object as a whole (gestalt). This property of hanging- 
togetherness of image elements and their graded composition are both fuzzy phenomena, which should be addressed 
properly for effective image segmentation. While the property of graded composition has been handled in the past through 
fuzzy logic and/or probabilistic methods, fuzzy connectedness was the first framework that allowed capturing the idea of 
fuzzy hanging-togetherness via fuzzy topological principles.32 It is defined as follows. 

We think of any nearby voxels c and d in C as having a fuzzy adjacency. The strength ßdc d) of this fuzzy relation a is 
smaller the farther c and d are. The idea behind a is to capture the blurring property of imaging devices. We define another 
fuzzy relation K in C that assigns to every pair of voxels (c, d) an affinity. The strength ß^c, d) of this relation depends on 
how near c and d are spatially (i.e., on ßjc, d)) and on how similar the scene intensities fie) and fid) are as well as how 
similar intensity-based properties computed at c and d are. The intent here is that K is "local"; that is, if c and d are far apart 
(spatially), then their affinity is 0. To define fuzzy connectedness K as another fuzzy relation in C, we consider all possible 
"paths" between all possible pairs of voxels in C. A path between any voxels c and d is simply a sequence of nearby voxels 
starting from c and ending in d. To every path from c to d we assign a "strength of connectedness" which is simply the 
smallest affinity of pairwise voxels along the path (weakest link). Finally, the strength of connectedness ßg(c, d) between c 
and d is the largest of the strengths of connectedness of all paths between c and d. In determining a fuzzy connected object in 
C, ßrfc, d) should be determined for all possible pairs (c, d) of voxels in C. This computationally explosive problem is 
considerably simplified through some key theoretical results, and finding fuzzy connected objects essentially reduces to 
dynamic programming.32 

The definition of affinity is a key to the effectiveness of segmentation in this method. We think of the strength of affinity 
ßt(c, d) between c and d to consist of three components:33 

Mc'i)=*(vw) (1) 

Pa is the adjacency component mentioned above. p¥ is a homogeneity-based component. As per this component, the greater 
the homogeneity of the intensity in the vicinity of c and d is the greater is the affinity, ß, is an object-feature-based 
component. As per this component, the closer the intensity-based features at c and d are to an expected value of these features 
for the object region, the greater is their affinity. A functional form of g we have used commonly is 

PK (c,d) = ßa (c, d) U   (c, d) p^ (c, d) . (2) 

In the scale-based approach,33,3* ßjc, d) and pjc, d) are defined taking into consideration all voxels within a sphere centered 
at c and A The radius of this sphere is related to the "scale" at c and d of the object being defined. The scale of the object at 
any voxel c is defined as the radius of the largest sphere that can be placed with its center at c such that it encloses only 
voxels in the object region. Paradoxically, this may sound like we need object segmentation to define scale at c. We have 
developed a simple algorithm32, n that does not require object segmentation for estimating scale at every voxel c. The 
algorithm uses simply a homogeneity measure to determine at what radius there is a sudden change in homogeneity as the 
sphere is increased from a radius of 1. We have shown32 that scale-based fuzzy connectedness is less sensitive to noise and 
can detect thin and subtle aspects of the object more effectively than the original fuzzy connectedness method, yet the theory 
of the original fuzzy connectedness framework still holds. Scale-based fuzzy connectedness is a powerful segmentation 
method that differs from published methods in that, (1) it takes into account in its design the size of the object in different 
parts of the scene and image noise and other artifacts; (2) it handles both the graded composition and hanging-togetherness in 
a fuzzy setting. We note that since the local scale is taken into account in determining p^c, d), the actual functional form of 
the affinity varies over the scene domain, adapting to the local object size and noise characteristics. We have also shown that 
slow background variations do not affect fuzzy connected object segmentations.32'33 

In the rest of this section, we summarize our approach to analyzing the scenes for the different protocols. The basic premise 
behind these approaches is the following. We think of segmentation to consist of two related tasks - recognition and 
delineation. Recognition is the high-level process of roughly determining the whereabouts of the object in the scene. 



^ttnäodon is the low-level process of determining the precise spatial extent and voxel-by-voxel material percent content of 
2SS K^owLlgeable hu^nanTcan outperform computer algorithms in most recognition tasks such as those enond 
*^Station Conversely, computer algorithms can be devised to more precisely, accurately and efficiently dehneate 
^Ärianm^ull delineation. Clearly, manual delineation to indicate the graded material imposition withinan 
Ss SrT-nie system we have developed for the above four tasks exploits this synergy between human and 
Snputer abilities in devising practical solutions that can be used routinely in clinical trials. 

2J. Analysis of FSE T2, PD images 

The approach here consists of the following four steps.33 We consider here the scene to be vector-valued with two (T2 and 

PD) values per voxel. 

1 On one slice, roughly centrally situated in the brain, an operator specifies a few voxels (seeds). This is a 
recognition step that uses the superior human knowledge. Points (voxels) are specified for the CSF, GM, and 
WM regions (and not for lesions). 

2 This is a delineation step. The seed voxels are utilized to determine the fuzzy connected objects that contain 
them This results first in a segmentation of WM, GM, and CSF. This knowledge is subsequently used to 
determine automatically a set of points (determined as holes in the union of GM and WM fuzzy objects) m 
each 3D lesion object that are used subsequently to delineate the lesions, each as a 3D fuzzy connected object 

3 This is again a recognition step taking help from a human operator. In this step, the operator accepts true 
lesions and rejects raise lesions with a mouse button click. Each 3D lesion is displayed on one slice image 
passing close to the centroid of the lesion. The operator may override this mode of display and examine the 
lesions on all or any selected slices. All felse positives are eliminated in this fashion. These are usually 
artifacts and choroid plexus. We found that the number of felse negatives is very low in our system (see next 
section for details on validation). Nevertheless, the system allows in this step selecting new seed points for 
missed lesions. These are subsequently utilized in delineating these lesions by repeating part of Step 2 above. 

4 The final step is the computation of quantitative measures from the segmented objects. These mcludetfae 
number of 3D lesions and their total volume (T2LV), the volume of CSF (CSFV), the volume of the brain 
parenchyma (BPV) which is the volume of the union of GM and WM, and normalized BPV, nBPV = 
BPV/(BPV + CSFV). The purpose of the last measure is to express the parenchymal volume independent of 
subject-to-subject variations in brain size. 

2.4 Analysis of TIWIE images 

The approach here consists of the following steps.36 

1 A conservative threshold is determined automatically from the histogram of the T1WE 3D scene (see * for 
details). The purpose of this threshold is to select seed points automatically within the enhancing lesions. 
This is a recognition step. 

2 The seed points are utilized to determine the fuzzy connected objects that contain them. This delineation step 
often results in the delineation of vessels. Taking the volume enclosed by the object as a criterion, large 
objects (large vessels) are automatically discarded. 

3. This step is identical to Step 3 of the previous section. 

4. For the accepted lesions, their total volume (JIEV) and number (nTlEV) are computed. 

2.5. Analysis of MT images 

The steps involved in this process are as follows.37 



1.   TTie bnun is firs: segmented from the two MT scenes (corresponding to the off-resonance poise on and off) 
The brain mask * then utilized to comoute an MTR scene a" - (C   f \      I 7 

» • A SCJ,e 6<"» -ic«,/raj. which is such that 

fZ le «~I Jr'1S n0t" ^ ^ ParenChymaI reS30n'0therWISe ^ W ^ have a value » derennined from the two MT scenes as described in Section 1.3. ««enmnea 

segmented for WM and GM as described in Section 2.3. The \TTR scenes ^  anri ,~ , 
subsequendy. *■«* and ^ ^ computed 

3.   For each of the MTR qc?nc<? a"    A""   ™A „&>      ■_• 
^ -. *»'^i,aBd41i'

a histogram of the whole scene normalize m HPV ■ 

WM, or GM. pccjimes (PZ5T> PSOJ and the mean m„ where x stands for BP, 

3.   RESULTS 

3.L Validation 

method for the particular application Aw**», hereWST«rSL .??•,* Preasion- accuracy, and efficiency of the 
objective actions includinThow Z"ÄpStiSfc^^Ävl?f

S*nenaitaB resulls «oAliJS 
Ammicy denotes the degree of agreement of me result wiS Srif^S an^.operat°r "P* ^«"red by the algorithms, 
the degree of automation), which may tearoSfljtS; S^"? ^^ ?* degree of °Perator help required 

is usually required to achieve an ioq.JSSSS^M^^nSSL*' ^^ A C°mpr0mise ta «> *» 
vanous analysis processes described the p^SS^eli?S2S? ^'T' I****'md efficiency °f *e 
account the subjectivity that appears in Steps 1 and /2d°m" uTe nt™f.?f «"*»*»» of our system taking into 
results is as follows.3"7-» For T2LV- S- ,7H ^ P^ceuient of the pauent m the scanner. A summary of the 

1.5%; 95% confidence in JZ TofL Sga^^T^^S °f VariaÜ°n < M* «*« *» -Sti- = 
workstation); 10 minutes per studv This reduS m *^r 7 J? ' T" °Perator-aine «quired (on a Sparc 20 Sun 
operator variations, and S false££&SLV^L ™^ ^^ F°r T1ELV: No-^ inS 
operator coefficient of variation < 05fttadn^i»i?S^SS Si     T* ^ StUdy- For BPV: ^ ■«» **>- 

aatMm > 99% — - ^ETäKä Är^a 

Kantate along recognition help from the user to nST&S SS,ST\ ^^ *" by ded^ not automatic to 
efficaciously as possible to make the systemTffideT™hiSL^SJ « ^ "^^ H°WCVer' ** hdP is »*= « 
without sacrificing precision and accuracy ^ We COntUlll? t0 anProve *e efficiency of our system 

3 i Clinical 

'p^rrnr. 39-45 p    f        L 

TO and *Ä^^^^ V*? ** ™ <**•> < ^ * -» ** 
with nBPV (-0.66, „ < 0.02) in the CP group mloth 7oL t J?J??- * A5?,f °Up- T2LV ^^^ a S«^ ««biion 
Generally we found CSFV to be signffiS^ ^S pan^TÄp J^^ ^l*0« ^ n0t ^ifican^ 
control subjects (p < 0.005). A gocd'correlation wafse^n tetw'in T^L^ ^Tr^n %*""!?£ ta »P™** "«rmal 



Sions in stay «met. w* «™d tot OTcal pay "»^tSKhS«. th» »otan« and clinical disabilijy. By 
Ster teions comprised *«*;«• * «•»■*«« !£Ä£^^ andata. «im disability «* "BPV (-0.69, , < 

T2WI 

Scant decrease in the number of enhancing lesions (p -™5) ^™^ signScantly less (p = 0.02) in the group 
$■differences were seen in T2LV in the two groups. The loss oTbram ^ue w^ sgninY    ^^ ^^ ^ rf 

STSpTT^^ *• -—a ^ l-B OT 
inflammation and on preventing brain atrophy in RR patients. 

^in^^» Compared to thenormal control ^^^^^.'^ffA^oSSS. 
p^en^i significandy lower (p < 0.0005) and so were MBP £«_£»*«* JT'°3 Jj ^p^neter correlated 
ocularly, showed the best correlation wi* EDSS «£for *. RR group (4M P d ^ CSFV^S, p < 0.0001) 
Songly with nBPV in both RR (0.69,p < 0.001) and tbeCP ^^^Swd with disease duration (p < 0.01). 
5 two groups are pooled into a singleJJg^STI oSl^Seln^manzed histogram peak height 
individual neuropsychological tests «^^ ^*JS Sed. »d nc3 patients, m a serial MRI study of the RR 
differed (p < 0.05) among severely unpaired£***** EfZSJam• mTwhüe no significant changes in EDSS were 
group, „PH,, ^«!^a^^u^To^ iSSifSl^Si man in ncTal controls." In longitudinal 
noted. Mm* and mwM were agnificanüy (p < u.ioj tower m fj\ *\ „^^ duration Up to 44% of new lesions 
Si. both these entities shifted in the djecuon o^^^J^/^iS^en identified as abnormal by 
identified on later studies were demonstrated to »-^g^ "J^j£Sta RBMS patients than in normal controls * 
MIR criteria. As to the GM,MGM and IIIGM were significantly (p < 0.01) lower in K** y 
nPHcM inversely correlated with EDSS (r = 0.65, p < 0.01). 

4.    CONCLUDING REMARKS 

4.L Automation, failure, user assistance 

Any segment method can, and therefore, will, go^-ng if^s^cient ^^^^^iSSX 
clinical trial setting. Therefore, for quality «««* * » "^^^^^Stiu^ after onTa great deal of 
processing loop. Complete automation may, therefore, be an elusive' S05"^*™? researchers and developers, our aim 
Speriend within the same imaging modality. ^«^S ^^algorithms S a research 
should be to consider human interacts within *e^Wj^^teSS pr^Sere may no? be optimal yet in terms 
goal of minimizing this interaction as much as possible. ^ W» **^tinuTStighten this stock in efficiency, 
of the degree of automation achievable, but it is certainly practical We continue to ngnien uu» 

42. Standardization of MR intensity scale 

A major difficulty with the MRI techniques for most protocols ^J^™^ 
even within the same protocol, for the same body region, for "■«? <£ttined on fe "^Tta image segmentation and 
poses problems in finding the proper window setting ^Jf.^Te^SSfic intend mining, setting 
SysE Most image segmentation ^^^^^^^^^^^tis results in compromising 
values for the parameters in a patient-study-independent^fashion J*^ ?^    0f parameters may be necessary to 
precision, accuracy, and efficiency of ^^uoaJZ^^^t7mc^^ L lower precision, 
handle these scannexKlependent variations in intensity, which will affect efficiency ana may <u*> 



We have recently developed a method*3, u to standardize the MR image intensity scale. It is a post-acquisition processing 
method which maps non-Iineariy the scene intensities in any given scene acquired as per a given protocol for a given body 
region into a standard scale so that the same intensities in the transformed scene will have the same tissue specific meaning. 
The method is based on deforming histograms so that they are as similar as possible for all scenes of the same body region 
and protocol. We are in the process of utilizing this method in modifying our system to improve the efficiency of the various 
processes of quantification without sacrificing precision and accuracy. 

4J. Standard intensity-based analysis 

All objects - normal and pathological - have a heterogeneous tissue composition. This combined with the blurring and noise 
introduced by the imaging device makes tissue regions have a heterogeneity of intensities. We believe that this heterogeneity 
has tissue-specific information and is useful in characterizing disease stage and severity. Such a ctaracterization becomes 
impossible when there is scanner-dependent intensity variation. As illustrated by MTR analysis, " because of the 
tissue-specific meaning of MTR values, standardization may permit us to neat other protocols (T2, PD, T1WIE, T1WI) also 
in the same tissue-specific way as MT imaging. More importantly, flat measures such as volume of tissue regions ignore the 
heterogeneity information and may lose important disease specific information. We should really consider volume 
distributions, that is, intensity histograms within segmented tissue regions, as demonstrated by MTR analysis, for 
understanding subtle disease processes. 

4.4. MS segmentation "workshop" 

In MS (and other neurological applications), a variety of MRI protocols are utilized as we examined in this paper. The actual 
imaging parameters used in these protocols vary among institutions. In spite of the numerous brain MR image segmentation 
methods developed during the past 15 years, none of them is capable of handling variations within the same protocol, and 
much less, the variations among protocols. What we need is a segmentation "workshop" wherein a protocol-specific 
segmentation method can be quickly fabricated. For the MS application, we believe that the fuzzy connectedness framework 
can be utilized to build such a workshop and we are working toward this goal. 
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ABSTRACT 

In the past, we have presented three user-steered image segmentation paradigms: live wire, live lane, and the 3D 
extension of the live-wire method. In this paper, we introduce an ultra-fast live-wire method, referred to as Iive- 
wire-on-the-fly, for further reducing user's time compared to live wire. For both approaches, given a slice and a 
2D boundary of interest in this slice, we translate the problem of finding the best boundary segment between any 
two points specified by the user on this boundary to the problem of finding the minimum-cost path between two 
vertices in a weighted and directed graph. The entire 2D boundary is identified as a set of consecutive boundary 
segments, each specified and detected in this fashion. A drawback in live wire is that the speed for optimal path 
computation depends on image size, compromising the overall segmentation efficiency. In this work, we solve this 
problem by exploiting some properties of graph theory to avoid unnecessary minimum-cost path computation during 
segmentation. Based on 164 segmentation experiments from an actual medical application, we demonstrate that live- 
wire-on-the-fly is about 1.5 to 33 times faster than live wire for actual segmentation, although the pure computational 
part alone is found to be over a hundred times faster. 

Keywords: image segmentation, boundary detection, active boundaries, 3D imaging, shortest-path algorithms 
dynamic programming, graph theory. ' 

1. INTRODUCTION 

Image segmentation is a hard problem with numerous applications in the imaging sciences.1 It consists of two tightly 
coupled tasks - recognition and delineation. Recognition is the process of identifying roughly the whereabouts of a 
particular object in the image and delineation is the process of specifying the precise spatial extent and composition 
of this object. While computer algorithms are very effective in object delineation, the absence of relevant global 
object-related knowledge is the main reason for their failure in object recognition. On the other hand, a simple user 
assistance in object recognition is often sufficient to complement this deficiency and to complete the segmentation 
process. There are many difficult segmentation tasks that require a detailed user assistance. To address these 
problems, a variety of interactive segmentation methods are being developed.2 These methods range from totally 
manual painting of object regions or drawing of object boundaries to the detection of object region/boundaries with 
minimal user assistance.3-7 

We have been developing interactive segmentation strategies with two specific aims: (i) to provide as complete a 
control as possible to the user on the segmentation process while it is being executed, and (ii) to mmimize the user 
involvement and the total user's time required for segmentation, without compromising the precision and accuracy of 
segmentation. Our strategy in these methods has been to actively exploit the superior abilities of human operators 
(compared to computer algorithms) in object recognition and the superior abilities of computer algorithms (compared 
to human operators) in object delineation. 

In the past, we have presented two user-steered segmentation paradigms, referred to as live wire and live lane,6-8 to 
segment 3D/4D object boundaries in a slice-by-slice fashion. These methods are in routine use in two applications9"12 

with over 15,000 tracings done so far. Although the live-wire method has its origin in some early joint work between 
Barrett and Udupa,13-15 this method has been subsequently developed independently by the two groups.6-8-16"18 

There are many differences between the live-wire method developed by each group, as previously explained in.6 

Besides these differences, we have extended the ideas underlying the live-wire method to create new methods, live 
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lane6 and the 3D extension of live wire.16 In this paper, we introduce an ultra-fast live-wire method referred to 
as hve-wire-on-the-fiy, with a new live-wire algorithm for drastically reducing user's time compared to our previous 
work on 2D live wire. 

In live wire,6-7 to segment a 2D boundary, the user initially picks a point on the boundary and all possible 
minimum-cost paths from this point to all other points in the image are computed via dvnamic programming 
Subsequently, a "live wire" is displayed in real time from the initial point to any subsequent position taken by the 
cursor. If the cursor is close to the desired boundary, the live wire snaps on to the boundary. The cursor is then 
deposited and a new live-wire segment is found next. The entire 2D boundary is specified via a set of live-wire 
segments in this fashion. A drawback of this approach is the computational time for all possible minimum-cost 
segments from each selected point on the boundary to other points in the image. This time increases with the size 
of the image compromising the interactivity of the method in some practical situations. For images from 256 x ^ 
to 1024 x 1024 pixels, for example, live wire running on a 300MHz Pentium PC requires about 2 to 180 seconds*to 
compute all possible minimum-cost segments from each selected point. 

In live wire on the fly, the user-interaction process remains the same, but we have devised a linear time complexity 
algorithm to save a considerable amount of user time by avoiding the computation of all possible minimum-cost 
segments. When the user selects a point on the boundary, the live-wire segment is computed and displayed in real 
time from the selected point to any subsequent position of the cursor in the image. To make this feasible, we exploit 
the fact that by the time we have found a live-wire segment with cost value K, we have actually found all possible 
live-wire segments with cost value less than K in the image. Moreover, any live-wire segment with cost value greater 
than or equal to K contains one of the previous live-wire segments with cost value less than K. Therefore the 
computation of the minimum-cost segment from a selected point to the current position of the cursor uses the results 
of computation from the selected point to the previous position of the cursor. 

In Section 2, we present the Iive-wire-on-the-fiy method and its algorithms. In Section 3, we present the results 
of evaluation between live wire and live wire on the fly based on efficiency for segmentation. Finally, we state some 
concluding remarks in Section 4. 

2. LIVE-WIRE-ON-THE-FLY 

We define a «D ,scene C as a pair (C,g) consisting of a finite 2D rectangular array C of pixels and a function 
g\j>) ■ C -»■ [L, H] that assigns to each pixel p in C an intensity value lying in an interval [L, H]. We associate with 
C a directed graph m which the vertices of the pixels represent the nodes of the graph and the oriented pixel edees 
represent the arcs. A 2D boundary of interest in C is a closed, oriented, and connected contour made up of oriented 
pixel edges. Each oriented pixel edge in C is a potential boundary element b. which is called a bei for short To each 
bei b we assign a set of features whose values characterize the "boundariness" of b. These values are converted to 
a single joint cost value c(b) per bei b. Thus, the problem of finding the best boundary segment (live-wire segment) 
between any two points (pixel vertices) specified on the boundary is translated to finding the minimum-cosTpath 
between the corresponding two vertices of the graph. The issues about selection of features and how to convert 
feature values into cost values were previously addressed in.6 The problem we want to address here is how to reduce 
the time for optimum path computation, and, consequently, the total user's time required for segmentation. 

To tackle this problem, we will exploit some known properties of graph theory, particularlv for the computation 
of shortest-paths, as described in Section 2.1. This leads to the algorithms presented in Section 2.2. 

2.1. Graph Properties of Shortest Paths 

In the Hterature on shortest-path algorithms,19 there are many efficient solutions for finding minimum-cost paths in 
a weighted and directed graph. Particularly, we have adopted Dial's implementation of the Dijkstra's algorithm 2° 
ihis algorithm computes the shortest-paths to all nodes from a single node in 0{m + nC) time where m is the 
number of arcs, n is the number of nodes, and C is the maximum cost assigned to any arc in the graph Actually 
in this case the cost assigned to each arc should be an integer in the interval [0,C]. Dial's solution uses a circuit 
queue with C + 1 buckets of nodes as the priority queue of the Dijkstra's algorithm. Since the bottleneck of the 
Uijkstras algorithm is in maintaining the priority queue, Dial's solution uses the bucket sort algorithm to speed up 
this process. We will come back to this issue in Section 2.2. 

In our problem, the live-wire segment between a selected point vs on the boundary and the current position ve 

of the cursor in C is the shortest-path P = („, -~ «,) from v. to vt in our graph, where the cost of P, denoted 



K{P), is the sum of the joint costs c(6) of all bels 6 comprising P. In fact, Dijkstra's algorithm returns a tree of 
minimum-cost path (or a tree of shortest-path) rooted at u,,21 which consists of all minimum-cost paths from v, to 
all vertices in C. We will denote this tree by T(v.) = {P = {v, ~» ve)/ve € C}. 

For any real number fc, we denote by Tk(v,) the tree of minimum-cost path rooted at v, such that the cost of 
any path in this tree is less than it. That is, Tk{v,) = {P = (vs ~ ve)/ve € C,K{P) < k). The algorithm reported 
in this paper exploits the following properties of T(v,). 

1. To compute the minimum-cost path P = (v, ~» ve) with cost K{P), there is no need to compute Tk(v,) for 
k > K{P). 

2. By the time we have found the minimum-cost path P = (v, — ve) with cost K{P), we have actually found the 
tree of minimum-cost path TK(P){VS). 

3. The tree of minimum-cost path Tk{vs) contains the tree of rninimum-cost path TK(P){vs) whenever k > K{P). 

We use the first property to modify Dial's implementation of the Dijkstra's algorithm to quit optimum path 
computation by the time we have found the minimum-cost path P = (v, ~» ve). We call this algorithm DSP (see 
Section 2.2). We use the second property to avoid optimum path computation for any path P' = (vs ~» v't) with 
cost K(P') < K{P). Thus, when the user moves the cursor to a new position v'e, such that K(P') < K{P), and we 
have already found P, the algorithm just shows P' = (v, —► v'e) without requiring computation. We use the third 
property to continue optimum path computation for paths P' = (vs ~» v't) with costs KiP1) > K(P) based on the 
previous result of algorithm DSP for computing P. 

2.2. ALGORITHMS 

Algorithm LWOF 

Input: The joint cost function c and an initial vertex «o selected on a 2D boundary of interest in C; 
Output: A closed, connected, and oriented contour B (made up of bels); 
Auxiliary Data Structures: A 2D "cumulative cost" array cc representing the total cost of the optimal paths found 
so far from v, to other vertices in C; a 2D "direction" array dir indicating, for each vertex, to which of its immediate 
neighboring vertices the optimal path goes; a circular queue Q of vertices with C +1 buckets; a list L of vertices which 
have already been processed; a current path P(vs ~» ve), where v, is the current point selected on the boundary and 
vt is the current position of the cursor in C; and a list B of bels which have already been identified as belonging to 
the boundary of interest in C; 

begin 

1. set cc(v) to oo and dtr(i;) to null for all vertices v in C, and set L to empty; 

2. t>, «- vo, set cc(vs) to 0, and put t;, in Q\ 

3. repeat 

a. determine the vertex ve in C pointed to by the cursor; 

b. if ve is not a vertex of any bei in B then 

(i) compute P ^-DSP{vs,ve,Q,cc,c,dir,L) and display the bels in P; 

(ii) if vt is selected by the user and vt € C then 
a. add the bels in P to B; 
b. set cc{v) to oo and dir(v) to null for all vertices v in C; 
c. remove all vertices t; from Q, and remove from L all vertices v which do not belong to any bei in 

B; 
d. v3 «- ve, set cc{vs) to 0, remove v, from L, and put v, in Q; 



endif, 

endif, 

until the user indicates a "closer operation; 

4. ve «- vo and remove ve from I; 

5. compute P +-DSP(vs,ve,Q,cc,c,dir,L) and display the bels in P; 

6. add the bels in P to B and output the bels in B; 

end 

Algorithm DSP 

Input:  an initial vertex v,\ a terminal vertex vt; the circular queue Q; the cumulative cost array cc, the joint 
cost function c; the direction array dir; and the list L of already processed vertices; 
Output: A set of bels forming an optimal path from v, to ve; 

begin 

1. while ve £ L do 

a. remove a vertex v from Q such that cc{v) — mm?'SQ{CC(V')}, and put v in L; 

b. for each vertex v' such that v' is in the set of the 4-adjacent neighbors of t; and v' £ L do 

(i) compute cctmp = cc(v) + c(b') where 6' is the bei whose direction goes from v' to v and c(b') is the 
joint cost of &'; 

(ii) if cctmp < cc(v') then 
a. set cc(v') to cctmp and Är(r') to the direction from v' to v; 
b. ifv'&Q then insert r' in Q eise update v' in Q; 

endt/; 

end/or, 

endwhile; 

2. starting from ue, trace recursively the next vertex pointed to by the current vertex using the direction 
information in dir until v, is reached, and return the bels so traced; 

end 

In the algorithms above, Q is a bucket represented by a circular vector with C + 1 positions from 0 to C (see 
Figure 1). Each position i, i = 0,...,C, has associated with it a doubly linked list which contains vertices with the 
same cumulative cost value. In Step 3b(ii)c of algorithm LWOF, we remove all vertices v from Q in 0(C) time since 
we just have to set to null the list associated with each position i,i = 0,...,C,inQ. An index io is used to indicate 
the current initial position in Q (see Figure 1). In Step la of algorithm DSP, a vertex v in Q with the minimum 
cumulative cost cc{v) is removed from the beginning of the doubly linked list at position to. If this list is empty, 
io is incremented until the next position in which a non-empty list is found. Taking the worst case, this operation 
has a computational time complexity of 0(C). In Step lb(ii)b of algorithm DSP, a vertex v' with cumulative cost 
cc(v') is inserted in Q at the beginning of the doubly linked list at position [cc(v') mod (C + 1)]. This operation has 
a computational time complexity of 0(1). The Dijkstra's algorithm guarantees that the vertices in Q will be always 
stored in the increasing order of cumulative cost, because the difference between the maximum and the minimum 



cumulative costs of the vertices in Q is always less than or equal to C. In the same step, a vertex v' in Q may have 
its cumulative cost updated, meaning that we have found a new path L-om v, to v' with a cost less than the current 
cost cc(v ). In this case, we have to remove v' from its current position in Q and insert it into a new position in 0 
This process is done with a computational time complexity of 0(1). 

Figure 1. Bucket Structure in a circular queue. 

In the worst case, algorithm DSP has the same computational time complexity 0(m + nC) as in the Dial's 
unplementation of Dijkstra's algorithm, where m is the number of bels in C, n is the number of vertices in C and 
mLi -T^T C°% C(6) ^fiSned to "** beI 6- 0ther snortest-Path algorithms exist with computational time 
ZTtTr , ? °{m + nC) iet °(m + nl0^)> 0(m + nJS£ü), and O(mloglogC), see">). Tnese algorithm! 
use more complex data structures than our circular queue to reduce the time complexity for inserting and removing 
ZT*'* OUr un

1PIementati011' we have a time complexity of 0(1) for inserting and updating vertices in Q In 
™JT 2t ^ W uVe a tme comPlexity of 0(C) for removing a vertex from Q with minimum cumulative cost as 
th™K 

a l°Santhmic comPlexity Stained by these algorithms. After some experimentation, we have found that 
r ?™ i mc^men^ t0 reach the next non-empty position in Q is usually less than 0.01 of C. Actually even 
it f« I! , ft f Typican* we have "»* 4095 ^d 255 for C in our implementation of live wire. Therefore 
m4TgatCedlrtht      *** ™VT°Vement m Hve ^ ** other ^orithms is really significant. This should be 

3. EVALUATION 

effiln^r aSSeSSed,the ^^ of a segmentation method based on three factors - precision, accuracy, and 

tife S 22T r1erS 1° the rePf taKmty °f the meth°d aBd CM be meaSUred * evaluat-g *e varialns in 
tn!th  Effil   ^ f nation because of subjective operator input. Accuracy refers to the degree of agreement with 
Sutedfo IT werlt0 thC PraCÜCal vtahüi* °f the meth0d «P~d « «" action of the toS user's time 

analTi 5 ST? t segmentation process. Based on 2,000 tracings in a particular application and statistical 
analysis of the results, we have shown that the segmentations of the 2D live-wire method in general agree with 
those of manual tracing (accuracy) and that the live-wire method is more repeatable (precision^th aJaTisSal 



significance level of p < 0.03, and 1.5-2.5 times faster (efficiency), with a statistical significance level of p < 0.02, 
than the manual method. In this section, we will show the results of comparing live wire and live wire on the flv 
taking into account the efficiency of the methods. Since the delineation of the contours output by live wire on the 
fly is exactely in the same way as in live wire, the accuracy and precision of the former will be identical to those of 
the latter, and, therefore, they need not be assessed again. 

In,6 we have introduced a feature called /8 in live wire to constrain the search for optimal paths in the current 
slice to an annular region (shell) of width W centered around the projection onto the current slice of the contour(s) 
traced in the previous slice. With feature /g, live wire yields very fast response even for large images. Of course, we 
can also use /8 to further improve the efficiency of live wire on the fly on large images, but we will consider in this 
section a comparison between live wire with /8 and live wire on the fly. Therefore, our experiments will take into 
account three methods: 

• LW: live wire without fs. 

• LWF8: live wire with f$ using W = 60 pixels. 

• LWOF: live wire on the fly. 

For our experiments, we have chosen one object (the talus bone of the human foot) in one of our ongoing 
applications, the kinematic analysis of the tarsal joints of the foot based on MR images.9"11 This was one of the 
objects used in the past to evaluate the previous live methods.6-16 We created a set of 67 2D scenes from the images 
within our database as follows. The images (slices) in our database are all of size 256 x 256 pixels. We chose a set, 
denoted C256, of 30 slices from this set pertaining to the data set of one subject. By bilinear interpolation of each 
of these slices, we created another set. denoted Ci2s, of 30 128 x 128 slices. Analogously, we created a set C512 of 
five 512 x 512 slices and a set C102.j of two 1024 x 1024 slices from the original 256 x256 slices. The reason for 
choosing a fewer number of scenes of size 512 x 512 and 1024 x 1024 is that the response time of LW in these scenes is 
prohibitively slow. One operator segmented the talus in each of these scenes using each of the two methods LW and 
LWOF. He also segmented the talus in C256 using LWF8. Our evaluation study thus consists of 164 segmentation 
experiments in total. More experiments involving other operators are currently underway. We used a 300 MHz 
Pentium PC for these experiments. 

We denote the time taken to complete any segmentation experiment e by Te (expressed in seconds). Consider 
any fixed scene type t e {C128, C256, C5i2, C1024} and method m € {LW, LWOF, LWF8}. We define the time taken 
Ttm (in seconds/slice) for segmenting the talus in a 2D scene of type t using method m to be the average of all times 
Te over all segmentation experiments e involving m and all 2D scenes of type t. 

We have done three types of timing measurements. The first type measures the CPU times for computing the five 
wire segments independent of other supporting processes that are required to conduct live wire segmentation. This 
allows us to assess the difference in speed that exists purely between the old and the new algorithms. The second 
type measures the time taken by the user to segment one complete contour ignoring the time for other processes such 
as displaying the slice and the computation of the cost values c(6) for all bels. The third type includes all processes, 
and, therefore, gives an idea of the comparative user time required for overall segmentation for the different methods 
in an actual application. We note here that, as in the live-wire method,6 training is required only once for an 
application and is not needed on a per study basis. This is typically under 5 minutes and is not included in any of 
the time measurements. 

Tables 1, 2 and 3 list the values of Ttm for all possible values of t and m, for the three types of measures, 
respectively. Although LWOF can find optimum paths hundreds of times faster than LW (see Table 1), users 
cannot react with the same speed (see Table 2). Table 3 shows that, from the point of view of actual segmentation, 
LWOF is about 1.5 to 33 times faster than LW for images from 128 x 128 pixels to 1024 x 1024 pixels. Even 
constraining optimum path computation into an anular region of width equal to 60 pixels (i.e., method LWFS), live 
wire on the fly is about 2.3 times faster. Note that, the advantage of live wire on the fly over live wire increases with 
the size of the image and with the number of points required per boundary. In our experiments, the 2D boundaries 
of the talus require 2 to 5 points in both live wire strategies. 



Ci28 C256 1 C512 C1024 

LW 2.14 15.17    99.57 901.24 

LWOF 0.23 0.62      2.27 8.74 

1   LWF8 - 8.25 —" 

j—euÄ^ 
Co.       Cos«         C512         <-n024 

LW        8.37    20.93    11Ö.2U    959.00 

LWOF     5.67     5.33       8.00       lo.50   | 

LWF8       -       14.13        -           "      1 

for other processes. 

Cl28       C256       C512       Cl024 

T.w      12     24    120    yyu 

LWOF        8          8         VI         w 

LWF8       -        18   1    -          "     1 

4   CONCLUDING REMARKS 

We have prated a new uaer-^rad bnase ^J^J-^ uve 5."Ä?'.£ 

experiments involving multiple operators are being done. 

on the boundary to all other poult* m the nnage. Tors toe menu* ™i™e j       ^       considerably 

r^,'fcÄ;ffÄ—ÄK* - «"».* ^ avoiding for images larger than 256 x 255 pixels,    we ud.vC — „„JL«  n,,,, iive wire on the fly computes and 
unnecessary optimum path computation during the ^^^^J^X^^P^ 
displays live-wire segments in real time, even for very large images, even on low powerea       P 
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Abstract 

Studies reported in the literature indicate that breast cancer risk is associated with mammographic 

densities. An objective, repeatable, and a quantitative measure of risk derived from mammographic 

densities will be of considerable use in recommending alternative screening paradigms and/or preventive 

measures. However, image processing efforts toward this goal seem to be sparse in the literature, and 

automatic and efficient methods do not seem to exist. In this paper, we describe and validate an auto- 

matic and reproducible method to segment dense tissue regions from fat within breasts from digitized 

mammograms using scale-based fuzzy connectivity methods. Different measures for characterizing mam- 

mographic density are computed from the segmented regions and their robustness in terms of their linear 

correlation across two different projections (CC and MLO) are studied. The accuracy of the method is 

studied by computing the area of mismatch of segmented dense regions using the proposed method and 

using manual outlining. A comparison between the mammographic density parameter taking into account 

the original intensities and that just considering the segmented area is demonstrated which indicates that 

the former may have some advantages over the latter. 

Keywords:  Image analysis, mammograms, glandular tissue, image segmentation, fuzzy connectedness. 



I. INTRODUCTION 

In the mid 1970s, studies by John Wolfe [1], [2] suggested that an association existed 

between mammographic parenchymal patterns and the risk of developing breast cancer. 

Since then there have been many studies looking at the relationship between mammo- 

graphic fibroglandular density (often referred to as just density) and the risk of developing 

breast cancer. Although a few studies reported no association of density with increased 

risk, the majority of studies have found an association between parenchymal patterns and 

breast cancer risk. A recent meta-analysis [3] of all studies confirms that subjects with 

mammographic densities have an increased risk of breast cancer relative to those without 

densities. The risk increases with the density of the breast [4]. Women with dense breasts 

are known to have a four to six fold increase in breast cancer risk [1], [5], [6]. Cancers 

are detected at later stages in dense breasts and mammographers recognize that their 

diagnostic accuracy is lower in such women. 

The Wolfe classification was proposed many years ago to identify groups of women at 

high risk for breast cancer [5]. This scheme was widely used for many years, but has 

fallen into disuse because of several limitations. For example, inter-observer variability is 

a problem when the radiologists' subjective assessment is used to classify the amount of 

density present [7]. Secondly, the magnitude of the increased risk has varied widely in the 

published studies [3]. Thirdly, identification of this risk factor for a given woman has not 

altered screening recommendations [6], [8]. Computer-assisted analysis of mammographic 

density would provide an objective, quantitative measure of cancer risk factor. This mea- 

sure will be useful in total risk analysis in several ways. First, such risk analysis could 

influence the choice of alternative screening paradigms such as intervals between mammo- 

grams or use of other modalities such as MRI. Second, this measure could be useful in 

selecting a group of women for whom the risk-benefit ratio of a potentially toxic preven- 

tive measure, such as tamoxifin, would be favorable [16], [17]. Third, this measure could 

be used to signal the need for more careful interpretation of a subset of mammograms. 

For example, double-reading might be indicated for mammograms above a certain level of 

density. 

Image processing efforts toward this goal seem to be sparse in the literature, and au- 



tomatic and efficient methods for generating this measure do not seem to exist. Boyd 

et. al. [6] studied the relation between mammographic densities and breast cancer risk 

using both radiologist classification and computer-assisted density measurement. The 

computer-assisted measurement was based on interactive density thresholding using two 

user-selected thresholds. They observed statistically significant increases in breast cancer 

risk associated with increasing mammographic density in both methods. Boone et. al. 

[18] developed and evaluated a computerized method of calculating a breast density index 

and compared this index with breast density index ranking provided by mammographers. 

Byng et. al. [19] made a quantitative symmetry analysis between mammograms of differ- 

ent breasts of the same patient and between mammograms at different projections of the 

same breast via subjective classification, interactive thresholding, regional skewness mea- 

surement, and texture analysis. Ursin et. al. [20] studied the change in mammographic 

densities in women participating in a trial of a gonadotropin-releasing hormone agonist 

(GnRHA)-based regimen for breast cancer prevention using simultaneous evaluation, ex- 

pert outlining, and non-expert computer-based thresholding methods. They observed that 

all three methods yielded statistically significant reduction in densities from baseline to the 

12-month follow-up mammogram in women on the contraceptive regimen. They found a 

high correlation between computer-based results and the results from the expert outlining 

method. Huo et. al. [21] studied the ability of computer-extracted features, computed 

over a region of interest selected from the central breast region, along with age, to identify 

women at risk. They found that a computerized characterization of parenchymal patterns 

may be associated with breast cancer risk. An automatic method for segmenting the 

parenchymal region of a mammogram using first and second order gray-level histograms 

is presented in [22]. Another approach is presented in [23] for determining the volume of 

non fatty tissues in mammograms. Recently a computer-assisted user-interactive method 

to quantify mammographic density has been published [6], which concluded that quanti- 

tative classification of densities allows for the determination of more specific gradients of 

risk than do Wolfe's classifications. 

In this paper, we describe and validate an automatic and reproducible method to quan- 

tify mammographic densities and study the accuracy of related parameters. In Section II, 



a brief description of the principles of the scale-based fuzzy connectedness method which 

forms the core of the proposed method is presented. In section III, we describe how dif- 

ferent parameters are automatically selected for applying fuzzy connectivity on different 

regions. In Section IV, we discuss the results and validate the method — (1) by studying 

linear correlations of different area and density related parameters obtained from a set of 

mammograms across two projections and (2) by studying the accuracy of the method by 

computing the area of mismatch between the dense regions estimated by the new method 

and by manual outlining. A comparison between the mammographic density parameter 

taking into account the original intensities and that just considering the segmented area 

is demonstrated. Finally, we state our conclusions in Section V. 

II. SCALE-BASED FUZZY CONNECTEDNESS PRINCIPLES 

The concepts described here are applicable to n-dimensional (fuzzy) digital spaces; see 

[24], [25] for details. However, since our application deals with two-dimensional (2D) 

images, we confine ourselves only to the 2D case. 

Most real objects have a heterogeneous material composition. Further, imaging devices 

have inherent limitations including spatial, parametric, and temporal resolutions. In the 

acquired images of objects, these introduce inaccuracies and artifacts such as noise, blur- 

ring, and background variation. The artifacts together with material heterogeneity cause 

the object regions to exhibit a gradation of intensity values in the image. Even if the 

physical object is perfectly homogeneous and is made of exactly one material, its image 

will exhibit a graded composition within the object regions due to artifacts. In spite of 

the graded composition, knowledgeable human observers usually do not have difficulties in 

perceiving object regions as an integrated whole. That is, image elements in these regions 

seem to hang together to form the object regions in spite of their gradation of values. 

These two notions — graded composition and hanging togetherness — must be handled 

properly by any segmentation method for effective, robust performance. In our methods, 

they are addressed by a fuzzy relation among image elements called fuzzy connectedness 

[24], [25]. Such a general, sound, theoretic and algorithmic framework for segmentation 

greatly facilitates the quick development of new segmentation applications, as we have 

demonstrated for fuzzy connectedness in brain image analysis [10], [11], [12], [13], MRA 



[14], and craniofacial soft tissue display [15]. 

The scale-based method is briefly outlined below to the extent needed to follow our 

breast segmentation approach. The full details of its theory are given in [25]. We will 

be dealing with two object regions in our segmentation method as described in Section 

III. The first corresponds to the background region in the mammographic image and the 

second corresponds to the dense region. In the description in the rest of this section, 

"object region" refers to each of these regions. 

Throughout we denote the digitized mammographic image, referred to as a (2D) scene, 

by C = (C, /), where C denotes the pixel array, and /(c) denotes the pixel value for any 

pixel c G C. For any pixel c G C, we think of c as a pair (ci,c2) representing the two 

coordinates of the center of c. The range of / is assumed to be [L, H], where L and H are 

integers. 

We define a fuzzy relation K, called fuzzy affinity, on the pixel array C. This is intended 

to be a local relation among pixels that are nearby. The strength of this relation between 

any two pixels c and d in C, denoted by ßK(c,d), lies in [0,1]. It consists of three com- 

ponents: a fuzzy adjacency component a, a component ij) based on object homogeneity, 

and a component (ß based on object features. The idea is that when c and d are more 

adjacent, have more homogeneity of intensities, and are both very close to an expected 

object feature value, then c and d have high affinity. In other words, they hang together 

locally very strongly, a depends on how far c and d are. ip depends on how similar the 

intensity values (or other features) of the pixels in a neighborhood around c are to those 

around d. </> depends on how close the intensities (or other features) of the pixels around 

c and those around d are to some expected values of the intensities (or other features) for 

the object under consideration. We denote the strengths of all these three components 

(all of which lie in [0,1]) by /xQ(c, d), ^(c, d) and /^(c, d), respectively. We describe below 

the functional forms utilized for these components. 

Although the theory permits more general forms, in this paper, we use the following 

functional form for ßa. For any pixel c, na{c,c) = 1. Further, for any two pixels c,d, 

fj,a(c,d) = 1 if c and d differ in exactly one coordinate by 1; otherwise /j,a(c,d) = 0. The 

specification of both n$ and \i$ requires the notion of "object scale" at every pixel in C. The 



idea behind this notion is that if we can roughly estimate the size of the object structure 

locally at every pixel, then this information can be utilized to determine a neighborhood 

size around c and d for specifying \i^ and \i$ in a way that is tuned to the object and is 

independent of pixel-level variation due to noise. The object scale r(c) in C at any pixel 

c in C denotes the size (radius) of the largest disc centered at c that lies entirely in the 

object region in which c lies. Paradoxically, it appears that computing scale requires image 

segmentation. It is possible, however, to develop algorithms that give a rough estimate 

of object scale at every pixel based on measuring intensity homogeneity discontinuities 

and that do not require explicit image segmentation. We have demonstrated in [25] that 

this estimation is sufficient to give a good approximation of the scale and to make the 

fuzzy-connectedness-based segmentation very robust to noise and pixel-level variations. 

For now, we assume that r(c) is known at any c € C. In determining the scale-based fuzzy 

affinity between any pixels c,d € C, two digital discs, centered at c and d, denoted Bcd{c) 

and Bcd(d), both of radius min[r(c),r(d)], defined by 

Bcd(c)   =   {eeC\\\c-e\\<mm[r(c),r(d)}}, (1) 

Bcd(d)   =   {eeC|||d-e||<min[r(c),r(d)]}, (2) 

where || • || denotes the Euclidean distance, are utilized. 

For defining //,/,, consider any two pixels c,d e C such that ßa(c,d) > 0. Consider any 

pixels e € Bcct(c) and e' G Bcd(d) such that they represent the corresponding pixels within 

Bcd(c) and Bcd{d)\ that is, c - e = d - e'. We will define two weighted sums D+(c, d) and 

D~(c, d) of the differences of intensities between the two discs as follows. Let 

*S(e,e')   =   { 
/(e) -f(e'), if/(e) -/(e') > 0, 

0, otherwise, 

f(e')-f(e), if/(e)-/(e')<0, 

0, otherwise. 

(3) 

(4) 



Then 

D+(c1d)= Y, [l-Go,m^+3^(^(e,e'))]Go,min[r(c),r(d)](||c-e||), (5) 

e € Bcd(c) 
e' € Bcd(d) 

s.t. c — e — d — e' 

D~{c,d)= J2 [l-Go,n^+3^(^(e,e/))]Go,min[r(c)Ir(d)](||c-e||), (6) 

e G Bcd(c) 
e' € Bcd(d) 

s.t. c — e = d — e' 

where "s.t." denotes "such that"; Gmt<T denotes an unnormalized Gaussian with mean m 

and standard deviation a; m^ and o^ are, respectively, the expected mean and standard 

deviation of intensity differences between all pairs of adjacent pixels within the object 

region; \\c — e|| represents the distance between c and e. We will describe in the next 

section how these parameters are estimated for breast images. 

The connection of the above equations to the homogeneity-based affinity //,/, is as follows. 

There are two types of intensity variations surrounding c and d — intra- and inter-object 

variations. The intra-object component is generally random, and therefore, is likely to be 

near 0 overall. The inter-object component, however, has a direction. It either increases or 

decreases along the direction given by c - d, and is likely to be larger than the intra-object 

variation. It is reasonable, therefore, to assume that the smaller of D+(c, d) and D~(c, d) 

represents the intra-object component and the other represents the combined effect of the 

two components. (Note that when the values of 5*d (respectively, 8~d) are small, D+(c, d) 

(respectively, D~(c, d)) also becomes small.) If there is a slow background component of 

variation, within the small neighborhood considered, this component is unlikely to cause a 

variation comparable to the inter-object component. This strategy leads us to the following 

functional form for ^: 

„  (r A\     1 \D+(c,d)-D-(c,d)\ 

2^eeßcd(c) (jrO,min[r(c),r(d)]Ulc _ e\\) 

Note that \D+(c, d) — D~(c, d)\ represents the degree of local inhomogeneity of the regions 

containing c and d. Its value is low when both c and d are inside an (homogeneous) object 



region. Its value is high when c and d are in the vicinity of (or across) a boundary. The 

denominator in (7) is a normalization factor. 

For completing the specification of ^, the values of three parameters r(c), m^ and 

cty need to be determined. The method of estimating r(c) is independent of the type of 

object region to be segmented and will be described later in this section. The method of 

estimating m^ and o$ is specific to the object region and will be explained in Sections 

III-A and III-B. 

For defining the object-feature-based affinity, /^, we first compute scale-based filtered 

intensity value at c that takes into account the disc Br(c) defined by 

Br(c) = {e£C\\\c-e\\<r(c)}. (8) 

The filtered intensity value at any c G C is given by 

f n _ Eeefir(c)/(e)go,r(c)(llc-e||) 
h[C) EeeBr{c)Go,r(c)(\\c-e\\)    ■ {) 

Depending on whether the object of interest is darker or lighter, we define the following 

function utilized in defining /^. 

Object is darker: 

1, if/a(c)<77ty, 
W*(c) 

Object is lighter: 

W+{c) 

(10) 
Gm^(fa(c)),   otherwise. 

Gm^(fa(c)),    if fa{c)<m4n 

1, otherwise. 

In both cases, m$ and 0$ represent the expected mean and standard deviation of the 

intensities in the object region, respectively. Finally, the following functional form is used 

for ßf 

1, if c = d, 
/^(c, d) = < (12) 

min[W0(c),W</,(d)],   otherwise. 

For completing the specification of /i^, the values of three parameters r(c), m^ and a^ 

need to be determined. The method of estimating r(c) is presented below. The method 

of estimating m^ and a^> is specific to the type of object region to be segmented and will 
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be explained in Sections III-A and III-B.   Finally, the three components of affinity are 

combined as follows to define the scale-based fuzzy affinity, \xK 

\iK{c, d) = fia(c, d)y/fj^,(c, d) /^(c, d). (13) 

We now describe an algorithm for estimating object scale at every pixel. For a disc 

Bk(c) of any radius k (see (8)) centered at c, we define a fraction, FOk{c), that indicates 

the fraction of the disc boundary occupied by a region in which the scene is sufficiently 

homogeneous with c, by 

,  .        Ed6Bt(c)-Bt-i(c)Go,m^+3<^(|/(c)-/(rf)|) ... 
Ufc(CJ" \Bk{c) - Bh.i{c)\ " 

Here \Bk(c) - Bk-i(c)\ denotes the number of pixels in Bk(c) - Bk-i{c). We define B0(c) 

to be simply the set {c}. The algorithm for object scale estimation (OSE) is summarized 

below. The algorithm iteratively increases the disc radius k by 1, starting from 1, and 

checks for the fraction of the object FOk{c) containing c that is contained on the disc 

perimeter. The first time when this fraction falls below a pre-selected threshold ts, we 

consider that the disc enters into an object region different from that to which c belongs. 

Following the arguments in [25], we have used ts = 0.85. 

Algorithm OSE 

Input: C,c£C,m^^,a fixed threshold ts. 

Output: r(c). 

begin 

set k = 1; 

while FOk{c) > ts do 

set k to k + 1; 

endwhile; 

set r(c) to k; 

output r(c); 

end 

The notion of pixel affinity captures the local hanging-togetherness property of pixels. 

The notion of fuzzy connectedness expands this into a global phenomenon as follows. 
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Consider any two pixels c and d (not necessarily nearby) in C. (Note that when c and 

d are far apart, their affinity is 0.) Consider any path (i.e., a sequence of nearby pixels) 

starting from c and ending in d. We define a "strength of connectedness" of this path 

as simply the smallest affinity (weakest link) along the path between a pair of successive 

pixels in the path. Fuzzy connectedness is a global fuzzy relation, denoted K, on C. The 

strength of this relation between c and d (not necessarily nearby), denoted nK(c, d), is the 

largest of the strength of connectedness of all possible paths between c and d. A scale- 

based fuzzy connected object of C of strength 9, for any 9 e [0,1], that contains a specified 

pixel o in C is a subset O of pixels of C. O is such that, for any two pixels c, d in O, 

HK(C, d)>6, and for any pixel e not in O, MK(C, e) < 9. Given C, o, 9 and a scale-based 

affinity relation K, finding O requires the computation of the strength of connectedness 

of literally all possible paths between each pair of pixels in the set of all possible pairs of 

pixels in C. However, the theory leads to practically viable algorithms [24], [25] of far less 

complexity that are based on dynamic programming. We make use of these algorithms in 

our application. 

For any scene C = (C, /), any fuzzy affinity K, any pixel o in C, we define the fuzzy 

connectivity scene of C with respect to o to be the scene CKo = (C, IKO), where for any 

ceC, fKo(c) = HK{O, C). That is, the value assigned to any pixel c in CKo is the strength 

of connectedness of c and o. We generalize this definition from a single pixel o to a set of 

pixels X by setting fKx{c) = maxieX{M^(^) c)}. That is, in the fuzzy connectivity scene 

CKX = (C, JKx) of C with respect to X, any pixel c is assigned a value fKx{c) that is the 

maximum of the strength of connectivity of c with the elements of X. Connectivity scenes 

are what are output by the fuzzy connectedness algorithms [24], [25]. Upon thresholding 

them, we get the segmented fuzzy objects. 

III. DENSITY QUANTIFICATION 

Our method of mammographic density quantification consists of the following steps: 

(1) segmentation of the breast region from background; (2) segmentation of fat and dense 

regions within the breast; (3) estimation of the parameters representing quantified density. 

These are described in separate subsections below. 
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A. Segmentation of Breast from Background 

At the very beginning, using 3DVIEWNIX [26] supported live-wire [27] tools, regions 

corresponding to pectoral muscles are interactively excluded when those are projected on 

to the scene. This tool takes help from the operator in recognizing where the pectoral 

muscles are in the image but does the delineation of their boundary automatically. In this 

fashion, subjectivity is minimized. In the entire process of density quantification, this is the 

only step requiring operator intervention, if pectoral muscles appear in the mammographic 

projection. Scale-based fuzzy connectivity is used for segmenting the breast region from 

the background. Our approach will be to segment the background region rather than the 

breast region. To do this, we need to (1) determine the values of the parameters m^, a^, 

m^, and a^ for the background; and (2) specify a set of pixels in the background region. 

These are accomplished automatically as described below. 

In this study, we have utilized 120 mammograms from 60 patients, each in two pro- 

jections — MLO and CC. Studying all the 120 mammograms, we found that intensity 

histograms of mammograms always contain a prominent peak at low intensities, and this 

mode corresponds to the background. A typical histogram is shown in Figure 1. The first 

Fig. 1.   A typical mammographic intensity histogram. 

prominent peak in the histogram is detected and the intensity m^ corresponding to this 

peak is considered as the mean background intensity. Observing that this part of the his- 

togram is roughly symmetric about m,/,, the standard deviation of background intensities 

<j0 is computed as the root-mean-squared distance of the intensities from m^ as follows. 
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Let h(i) represent the number of pixels in the mammographic scene with intensity i (i.e., 

h(i) is the height of the histogram at i). Then, cr0 is determined as follows 

0> 
:L<KmJ«-^)2MJ) ,15) 

In this application, since the object of interest (i.e., the mammographic background) is 

darker, we use the functional form of (10) for computing object-feature-based affinity. 

Instead of an operator painting pixels in the background region for training, the set of 

pixels in C satisfying L < f(c) < ra0 + 3cr0 is utilized for estimating the parameters m^ 

and a$ for homogeneity-based affinity ^. m^ and cty are taken to be simply the mean 

and the standard deviation of intensity differences between all pairs of adjacent pixels in 

this set. 

During digitization, all mammograms were oriented so that the top-right and the bottom- 

right corners always lie in the background. (This was standardized for both left and right 

breasts.) These two corner pixels are used to form the reference set X for scale-based 

fuzzy connectedness processing. Figure 2(b) shows the connectivity scene obtained for 

the mammogram at CC projection shown in Figure 2(a). As shown in Figure 2(b), there 

is very good contrast between the background and the breast region in this connectivity 

scene. We discard connectivity strengths greater than half the maximum strength and 

keep the lower half as the zone for the breast region. This zone, however, often includes 

high noise pixels and markers in the background often used during mammography. To 

eliminate these pixels, the leftmost 1-pixel in the middle row in the thresholded connec- 

tivity scene is chosen as the reference pixel and the hard connected component containing 

this pixel is found as the breast region. Figure 2(c) shows the hard segmented breast 

region for the original mammogram of Figure 2(a). This method has worked correctly and 

automatically in all studies we have analyzed so far. 

B. Segmentation of Fat and Dense Regions 

Our strategy here is to segment the dense region as a set of fuzzy connected objects. The 

segmentation operation is confined to the breast region. The fat region thus gets defined 

indirectly as the complement of the dense region in the breast. For this segmentation, as 
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(a) (b) (c) (d) 

Fig. 2. (ä) An original mammographic scene of a patient's breast at CC projection, (b) Scale-based 

fuzzy connectivity scene for the background, (c) Segmented breast region, (d) Scale based fuzzy 

connectivity scene for the dense region. 

in breast segmentation, we need to specify the values of parameters m^, a^, m,p, and a^, 

for the dense region as well as a few pixels as the starting information in the dense region. 

Our approach to computing the parameters will be as for the segmentation of the breast 

region — to determine automatically a set of pixels that are definitely in the dense region 

and then to estimate the parameters from the intensity distribution within this set of pixels. 

In this application, since the object of interest (i.e., the dense regions) is lighter, we use the 

functional form of (11) for computing object-feature-based affinity /i^. To determine a set 

of pixels in the dense region, the largest intensity value MAX is determined by ignoring 

the upper 0.1 percentile of intensity in the histogram of the breast region. Similarly, 

the smallest intensity value MIN is determined by ignoring the lower 0.1 percentile of 

intensity. We then select within the breast the set of pixels having intensity not less than 

MIN + 0.75(MAX-MIN) for estimating the parameters. Specifically, we take the mean 

and standard deviation of the intensities of the pixels in this set as the values of m^ and 

00. Further, we take the mean and standard deviation of intensity differences between all 

pairs of adjacent pixels in this set as the values of m^ and a^. Finally, the set of pixels 
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in the breast region with intensity greater than MIN + 0.85(MAX - MIN) is used as 

the set of reference pixels. Figure 2(d) shows the scale-based fuzzy connectivity scene 

obtained for the dense region for the original mammogram in Figure 2(a). In the next 

section, we describe an automatic threshold selection method that is applied to the fuzzy 

connectivity scene for the dense region for a segmentation of the breast region into dense 

and fatty regions. 

C. Automatic threshold selection 

The connectivity scene is an image in which pixels hanging together strongly with the 

reference pixels supposedly all belong to the same object region [24]. It is usually easy to 

segment the object region by thresholding the connectivity scene even if the original scene 

is not amenable for thresholding. This property of fuzzy connectedness is demonstrated 

in [24] and a quantitative validation is presented in [25]. In the past, in other applica- 

tions utilizing fuzzy connectedness [10], [13], [14], [15], we have used fixed thresholds on 

connectivity scenes. In this application, we found that fixing the connectedness threshold 

is not always satisfactory, although each connectivity scene is still far more amenable to 

thresholding than the original. With this as the motivation, we developed an automatic 

threshold selection strategy for connectivity scenes, building on the idea of homogeneity- 

based affinity described in the previous selection but as applied to the connectivity scene. 

To select the best threshold, the method minimizes an energy function computed by 

considering spatial arrangements of pixel intensities within each region and across regions. 

We emphasize that the processing is now confined to the breast region. The basic idea is 

as follows. Every threshold divides the scene into two regions. A second order statistic, 

threshold energy, of local disagreements in the scene stemming from this partitioning 

is estimated and is used as a criterion for optimizing the threshold. Threshold energy 

characterizes the goodness (rather, badness) of a particular threshold and is defined as 

follows. Let B denote the set of pixels in the segmented breast region. We define two 

fuzzy relations p and p, respectively called likeliness of belonging to the same object and 

likeliness of belonging to different objects, on the pixels in B. The strengths of both these 

relations between any two pixels c and d in B depend on (1) how far c and d are; and 

on (2) how similar the intensity values (or other features) of the pixels in the circular 
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neighborhood around c are to those around d. As discussed in Section II, the size of the 

circular neighborhoods around c and d depends on the object scales at c and d. In fact 

the criterion in (2) is the measure of homogeneity-based affinity m between c and d. Two 

controlling parameters (indicating expected object homogeneity) are required to calculate 

the value of \x^ as described earlier. These two parameters are estimated as the mean and 

the standard deviation of intensity differences of all pairs of adjacent pixels in the region 

with pixel intensities (connectedness values) falling in the upper half of the histogram of 

the connectivity scene. The strength of the fuzzy relation "likeliness of belonging to the 

same object" between two pixels c,d € B, denoted /J,P(C, d), is then defined as follows. 

Za,beBs,.           M«M) 
ßp{c, d) = fia{c, d)   . (16) 

The strength of the fuzzy relation "likeliness of belonging to different objects" between 

two pixels c,d e B, denoted /j,p(c, d), is defined as follows. 

ßp(c,d) =fia(c,d) 

(      £a,*eB„ ^(a,b)\ 
Pi>{a.,b) < p$(c,d) 

Ea,beBßa{a,b) 
V / 

(17) 

Let /p(c, d, t) denote a predicate that takes a value 1 when the pixels c, d belong to the same 

object at the threshold t and 0 otherwise. Then the threshold energy E(t) is determined 

as follows. 

E(t) =  £ fp{c,d,t)nP{c,d) + (1 - fp(c,d,t))tip(c,d). (18) 
c,d€B 

In words, E(t) expresses the level of concordance between the two regions resulting by 

applying the threshold t to the connectivity scene. Finally, the threshold for which E(t) 

is minimum (indicating minimum concordance or maximum discordance between the two 

regions) is selected as the optimum threshold. For the fuzzy connectivity scene of Figure 

2(d), the distribution of E(t) is shown in Figure 3(a), while Figure 3(b) shows the location 

of the optimum threshold on the histogram of the connectivity scene of Figure 2(d). The 

segmented binary scene is shown in Figure 3(c). 
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Fig. 3.    (a), (b) Threshold energy and connectivity strength distributions for the connectivity scene of 

Figure 2(d). (c) Segmented dense region using automatic thresholding. 

D. Density Quantification 

From the original scene and the segmented fat and dense regions, the following param- 

eters are computed. 

TG: Total density within the breast region defined as the sum of intensities of pixels in 

the segmented dense region. 

TF: Total fat within the breast region defined as the sum of intensities of pixels in the 

segmented fat region. 

AB: Total area of breast defined as the number of pixels in the segmented breast region. 

AG: Total area of density within the breast region defined as the number of pixels in the 

segmented dense region. 

AF: Total area of fat within the breast region defined as the number of pixels in the 

segmented fat region. 

AvF: Average pixel intensity within the fat area defined by TF/AF. 
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The following parameters, some of which are derived from the above, which may be 

more meaningful, are actually used in our testing: TG, TG/TF, TG/AvF, TG/AB, AG, 

AG/AF, and AG/AB. Linear correlations of each of these parameters across two different 

projections (CC and MLO) were tested for all 60 studies. 

IV. RESULTS AND DISCUSSION 

The method has been tested in two ways — (1) by studying correlation of each density 

parameter computed from patients' mammograms at two different projections, and (2) 

by studying the accuracy of the method in terms of the area of mismatch between dense 

regions segmented by the new method and by manual outlining. 

A. Patient Mammograms 

The method has been tested on 60 studies selected from our database. Each study had 

two mammographic projections — CC and MLO. These mammograms were digitized on a 

Lumisys scanner at a resolution of 100 microns. The population includes 30 normal studies 

as well as 14 studies with benign and 16 with malignant masses and calcifications. Except 

for the exclusion of pectoral muscles in some cases, the entire method worked automati- 

cally on all mammograms wherein all parameters required by the algorithms were selected 

automatically. An additional 54 mammograms were processed for a different project — 

to assess the effect of hormone therapy on breast density.  The algorithms produced vi- 

sually acceptable segmentations in all 174 cases.     Figure 4 demonstrates the results of 

application of the proposed automatic method on several mammograms. The linear corre- 

lation coefficients for the parameters TG, TG/TF, TG/AvF, TG/AB, AG, AG/AF, and 

AG/AB derived from the two sets of projection images were 0.967, 0.902, 0.951, 0.944, 

0.959, 0.915, and 0.941, respectively. The scatter plots and the R-values of different pa- 

rameters across the two different projections over 60 pairs of mammograms are shown in 

Figures 5(a)-(g). In all these figures, the horizontal axis represents logarithmic value of 

the estimated parameter for each mammogram at the CC projection while the vertical 

axis represents the same for the matching mammogram at MLO projection. Although the 

scatter plots display logarithmic values, the R-values of linear correlation were computed 

on actual values of the parameters. It may be pointed out the the actual scatter in the 



Fig. 4. Results of application of the proposed density segmentation method on several mammograms at 

CC and MLO projections. In each set, the original scene, the connectivity scene for the dense region 

and the segmented dense region are shown. 

log-log graphs appear less. However, the log-log graphs were used to present compact 

displays for large data ranges. The ranges of gradients and y-intercepts of the trend lines 

were 0.998 to 1.0095 and -0.2893 to -0.0704, respectively. 

The high value of correlation coefficients indicates that our method of measurement is 

highly consistent between the two projection images of the same patient. The highest 

correlation is obtained for TG. Generally the parameters that use area measurements 

yielded lower correlations. The argument behind this may be that unless the 3D shape 

of the actual dense region in the breast is approximately spherical, the shapes of its 

CC and MLO projections may be quite different from each other. This may yield very 

different area measures (AG, AF) although the total density may still be the same.  To 
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Fig. 5. (a)-(g) Scatter plots and R-values of correlation studies for different quantitative parameters 

computed from mammograms at CC and MLO projections. In each scatter plot, the horizontal axis 

indicates the logarithmic value of the parameter at CC projection while the vertical axis indicates the 

same at MLO projection. 

verify this hypothesis, we selected among the 60 pairs of studies a subset of 20 pairs 

in which the shapes of projections of the same breast in CC and MLO appeared quite 

different. For this subset, we then computed the correlation coefficients. The coefficients 

for TG and AG for this subset were 0.898 and 0.68, respectively. The scatter plot for 

this experiment is shown in Figures 6(a),(b). To estimate statistical significance of the 

difference of the correlation coefficients for these two populations, we used the Fisher's 

Z-transformation test [30]. The p-value was 0.036245 showing that the difference in the 

correlation coefficients is statistically significant. However, the actual data were skewed 

and after removing the stray observations the p-value rose to 0.361511 indicating that the 

difference was not significant. The primary reason behind this disagreement may be the 

high nonlinearity between the total length in 3D of the tissue intercepted by a beam of 

X-ray and the outcoming energy. If this nonlinearity is corrected for with a knowledge of 

the length of interception, then we believe that TG and related parameters will correspond 
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more accurately to actual total density than the area-based parameters. 
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Fig. 6. (a)-(b) Scatter plots and R-values of correlation studies of TG and AG for a set of 20 studies 

with quite different shape at different projection. In each scatter plot, the horizontal axis indicates 

the logarithmic value of the parameter at CC projection while the vertical axis indicates the same at 

MLO projection. 

B.  Comparison with Manual Outlining 

A major difficulty in validating a density quantification method is how to generate the 

truth. Creation of a realistic physical breast phantom with known volume of dense tissue 

with realistic shape and distribution is a research topic of its own. In this paper, we have 

used manual outlining of dense regions by an expert mammographer to provide a surrogate 

of this truth. The outlining was performed using a computerized freehand drawing tool 

on digitized mammograms as supported by 3DVIEWNIX [26]. An example of manual 

outlining is presented in Figure 7. The task of manual outlining is difficult, quite ill-defined, 

and has its own limitations in terms of definition and inter and intra-operator variability. 

Additionally, we observed that the correlation of the density parameters computed from 

manual outlining is lower than that using the proposed method. 15 pairs of mammograms 

were randomly selected from our data set of 60 pairs of mammograms. Dense regions in 

each mammogram were manually outlined by the same expert and the parameters TG 

and AG were computed over the delineated regions. The linear correlation coefficients for 

TG and AG were 0.638 and 0.534, respectively. The scatter plots and the R-values of 

these two parameters across the two projections over 15 pairs of mammograms are shown 
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Fig. 7.   An example of manual outlining. The border of the dense region is shown bright. 
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Fig. 8. (a)-(g) Scatter plots and R-values of correlation studies for the parameters TG and AG computed 

from mammograms at CC and MLO projections. In each scatter plot, the horizontal axis indicates 

the logarithmic value of the parameter at CC projection while the vertical axis indicates the same at 

MLO projection. 

in Figures 8(a) and (b). 

While the correlation of different density parameters computed by the proposed method 

is demonstrated in the previous section, the purpose of the experiment described here is 

to show that the disagreement of the results produced by the automatic method with 

those of manual outlining is within the limitation range of the second method itself. 15 

mammograms were randomly selected from our data set of 120 mammograms. Dense 

regions in each of these mammograms were manually outlined by the same expert at two 
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different time instants (with a gap of 2 days). Also, the dense regions were segmented in 

each mammogram using the proposed method. For each mammogram, two percent areas 

of mismatch, AM, were computed, one between the results of manual segmentation at 

different time instants and the other between the results of manual segmentation at the 

first time instant and those using the proposed method. If X and Y are the two sets of 

pixels being compared, AM(X, Y) was defined by (fc™?^ x 100. The 95% confidence 

interval of AM for manual segmentation at different time instants was [0, 22.81] and that 

for manual and the automatic method was [0, 18.14]. This shows that the disagreement 

of delineation using the proposed method with manual outlining is within the range of 

variability of the latter method itself. 

V. CONCLUSION 

A near automatic method for quantification of breast density from digitized mammo- 

grams has been developed and tested on 87 pairs of patient mammograms. This method 

was executed automatically except for the exclusion of projected pectoral muscles. The 

method consists of the following steps: separation of the breast from the background, cre- 

ation of a fuzzy connectivity scene for the dense region, segmenting this connectivity scene 

using an automatic threshold selection method, and then computing various parameters 

that characterize total breast density. A set of density and area related parameters has 

been proposed and their precision in terms of their linear correlation across two different 

projections has been studied. The scale-based fuzzy connectivity method has been found 

to be very robust and effective in segmenting the mammographic images.   Amount of 

density is considered to be one of the strongest risk factors for breast cancer. Automatic, 

repeatable, and consistent breast density quantification from digitized mammograms is 

practical using the proposed method. The correctness of the proposed density quantifi- 

cation method has been validated in two ways — (1) showing high R-values of linear 

correlation between the two projections (CC, MLO) of the various parameters computed 

over segmented dense and fatty regions and (2) demonstrating the disagreement between 

delineations using the proposed method and using manual outlining to be within the range 

of variability of the second method. The method removes the subjectivity inherent in inter- 

active threshold selection techniques currently used. The ability of the computed density 
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parameters in evaluating risk is currently being investigated at our institution. 

A comparison between the mammographic density parameter taking into account the 

original intensities and that considering just the segmented area has been carried out. The 

motivations behind this consideration was that unless the 3D shape of the actual dense 

region in the breast is approximately spherical, the shapes of its CC and MLO projections 

may be quite different from each other while intensity based parameters would better 

capture the thickness and volume of the dense region using intensity information. For 60 

pairs of mammograms at CC and MLO projections, generally the parameters that use 

area measurements yielded lower correlations. To verify this argument, we selected among 

the 60 pairs of studies a subset of 20 pairs in which the shapes of projections of the same 

breast in CC and MLO appeared quite different and difference in the correlation coeffi- 

cients was statistically significant. However, when the skewness of data was removed by 

removing stray observations, there was no significant difference in correlation coefficients. 

The primary reason behind this disagreement may be the high nonlinearity between the 

total length in 3D of the tissue intercepted by a beam of X-ray and the outcoming en- 

ergy. Another hurdle in using intensity related parameters originates from the fact that 

the values of these parameters do not indicate the actual volume of dense regions. This is 

because, actual intensities in mammograms are dependent on different imaging parameters 

such as the energy and the frequency of X-rays used, plate thickness, film characteristics 

and X-ray attenuation coefficients of different tissues of different patients. It will be useful 

in the future to resolve this problem of nonlinearity and to somehow normalize the total 

density parameters such that they relate to the physical volume of dense regions. 
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